热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
郭宝珠
2023-05-10 15:35
  • 郭宝珠
  • 郭宝珠 - 教授-华北电力大学-数理学院-个人资料

近期热点

资料介绍

个人简历


郭宝珠,男, 1962年2月生。 1982年毕业于山西大学数学系, 1984年硕士毕业于中国科学院系统科学研究所。 1991年获香港中文大学应用数学博士学位。1999年中国科学院“百人计划”入选者; 2003年国家杰出青年科学基金获得者;2009年山西省首届“百人计划”专家。 2000起为中国科学院数学与系统科学研究院研究员, 2004-2019年为南非金山大学(University of the Witwatersrand)计算机与应用数学讲座教授。2019年加入华北电力大学数理学院。 主要从事从事无穷维系统的建模,控制,数值计算,偏微分方程解的研究。在人口分布参数控制, 无穷维系统的镇定问题, 振动系统分析的Riesz基理论,偏微分控制系统的适定性与正则性, 最优控制的数值解,输出含有时间延迟的分布参数系统控制,自抗扰控制等几个研究方面有重要的贡献。除去杰出青年基金外, 六次主持国家基金项目, 数次主持南非科学基金会项目。出版包括科学出版社在内的中文专著两本, 国际著名出版社英文专著三本 (Springer 1999, 2019;Wiley 2016)。 数篇文章被国际同行公开评价为“重要的文章”; “非常重要的文章”。 关于柔性机器臂剪力反馈控制文章被国际同行公开评价为“卓越的文章,用熟练非凡的数学证明了对机器人学实践显然重要的结果”。 其关于Riesz 基的方法被国际文献称为”郭氏型Bari 定理”。关于自抗扰控制的三个主要环节, 跟踪微分器, 扩张状态观测器, 以及反馈的工作奠定了这一控制技术的理论基础, 被国际同行评论为``对自控扰控制理论做出了重要的贡献”。主要科研项目情况
[1] 博士后基金(主持): 1991.9--1993.9, 国家教委 : 0.5万;
[2] 生灭过程、 弹性系统、烧蚀过程及其分布参数控制(主持), 1995.1--1997.12, 国家基金委(69404002): 8.3万;
[3] 振动系统控制(主持), 1995.6--1998.6, 国家留学回国人员基金:3万;
[4] 水资源中的应用数学-中法先进计划(主持), 1998.1--1999.12,国家科技部: 5万;
[5] 复杂系统控制的基础理论研究(参加), 1997.1-2000.12, 国家科技部: 500万(本人:14万);
[6] Hilbert空间Riesz基方法与振动系统的边界控制(主持), 1999.1--2001.12, 国家基金委(69874003): 10万;
[7] 中科院百人计划(主持), 2000.6-2003.6, 中国科学院: 200万;
[8] 柔性结构振动控制的分布参数理论研究(参加), 2002.1-2004.12, 国家基金委(60174008): 18万(本人:8万);
[9]偏微分方程系统的适定性与正则性的研究(主持), 2004.1--2006.12,国家基金委(60374019): 15万;
[10]分布参数系统理论(国家杰出青年基金})(主持), 2004.1-2007.12,国家基金委(60325309):120万;
[11] 数值求解最优控制: 动态规划方法(主持), 2010.1--2012.12,国家基金委(60974032): 31万;
[12] 山西省“百人计划”海外高层次人才}, 2010-2012, 100万;
[13]973 项目, 国家科技部 (2011CB808002)(参加), 2011.1-2015.12, 50万;
[14] 带有不确定干扰的无穷维系统的镇定(主持), 2013.1--2016.12,国家基金委(61273129): 80万;
[15]不确定偏微分控制系统的输出反馈与性能跟踪(主持), 2019.1--2022.12, 广东省教育厅(2017KZDXM087):30 万;
[16]不确定偏微分控制系统的输出反馈与性能跟踪(主持), 2019.1--2022.12,国家基金委(61873260): 65万.
主要获奖
[1]2014年北京市自然科学二等奖 (获奖人: 郭宝珠,王军民)
[2]2019年 教育部二等奖 (获奖人: 王军民, 郭宝珠)

研究领域


分布参数系统控制 (Distributed Parameter Systems Control)
控制理论 (Control Theory)

近期论文


[1]B.Z.Guo and Z.D.Mei, Output feedback stabilization for a classof first-order equation setting ofcollocatedwell-posed linear systems with time delay in observation, IEEE Transactions on Automatic Control, to appear.
[2] H.Feng, B.Z.Guo, and X.H.Wu, Trajectory planning approach to output tracking for a 1-D wave equation,IEEE Transactions on Automatic Control, to appear.
[3] H.C.Zhou, B.Z.Guo, and S.H.Xiang, Performance output tracking formulti-dimensional heat equation subject to unmatched disturbance and non-collocated control , IEEE Transactions on Automatic Control, to appear.
[4] Z.D.Mei and B.Z.Guo,Stabilization for infinite-dimensional linear systems with bounded control and time delayed observation,Systems & Control Letters, 134(2019),104532.
[5] J.Liu and B.Z.Guo,A novel semi-discrete scheme preserving uniformly exponential stability for an Euler-Bernoulli beam, Systems & Control Letters,134(2019), 104518.
[6]F.F.Jin and B.Z.Guo, Boundary output tracking for an Euler-Bernoulli beam equation with unmatched perturbations from a known exosystem, Automatica, 109(2019), 108507, 9 pp.
[7] W.Kang and B.Z.Guo, Arbitrary decay for boundary stabilization of Schrodinger equation subject to unknown disturbance by Lyapunov approach, IFAC Journal of Systems and Control,7(2019),100033.
[8]Z.L.Zhao and B.Z.Guo, A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty, IEEE Transactions on Automatic Control,63(2018), 211-218.
[9] F.F.Jinand B.Z. Guo, Performance boundary output tracking for one-dimensional heat equation with boundary unmatched disturbance,Automatica, 96(2018),1-10.
[10] H.C.Zhou and B.Z.Guo, Boundary feedback stabilization foranunstable time fractional reaction diffusion equation,SIAM Journal on Control and Optimization, 56(2018), 75-101.
[11] Z.L.Zhao and B.Z.Guo,A nonlinear extended state observer based onfractional power functions, Automatica, 81(2017), 286-296.
[12] H.C.Zhou and B.Z.Guo, Unknown input observer design and output feedback stabilization for multi-dimensional wave equation with boundary control matched uncertainty, Journal of Differential Equations, 263(2017), 2213–2246.
[13]H.Feng and B.Z.Guo,Active disturbance rejection control: New and old results, Annual Reviews in Control, 44(2017), 238-248.
[14] H.Feng and B.Z.Guo, New unknown input observer and output feedback stabilization for uncertain heat equation, Automatica, 86(2017), 1-10.
[15] H.Feng and B.Z.Guo, A new active disturbance rejection control to output feedback stabilization for a one-dimensional anti-stable wave equation withdisturbance,IEEE Transactions on Automatic Control,62(2017),3774-3787.
[16] H.Feng and B.Z.Guo, Observer design andexponential stabilization forwave equation in energy space by boundary displacement measurement only, IEEE Transactions on Automatic Control,62(2017), 1438-1444.
[17] B.Z.Guo and Z.H.Wu, Output tracking for a class of nonlinear systems with mismatched uncertainties by active disturbance rejection control, Systems & Control Letters, 100(2017), 21-31.
[18]B.Z.Guo and H.Q.Yu, Optimal state estimation for non-time invertible evolutionary system, SIAM Journal on Control and Optimization, 54(2016),2754-2786.
[19] B.Z.Guo, Y.S.Xu, and D.H.Yang, Optimal actuator location ofminimum normcontrols for heat equation with general controlleddomain, Journal of Differential Equations,261(2016), 3588-3614.
[20]R.L.Wen, S.G.Chai, and B.Z.Guo, Well-posedness and exact controllability of fourth-order Schrödinger equation with hinged boundary control and collocated observation, Mathematics ofControl, Signals, and Systems,28(2016),article 22.
[21] B.Z.Guo, Z.H.Wu, and H.C.Zhou, Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance, IEEE Transactions on Automatic Control, 61(2016), 1613-1618.
[22] W.Guo and B.Z.Guo, Performance output tracking for a wave equation subject to unmatched general boundaryharmonic disturbance, Automatica,68(2016), 194-202.
[23] H.Feng and B.Z.Guo,Distributeddisturbance estimator and application to stabilization formulti-dimensional wave equation with corrupted boundary observation, Automatica,66(2016),25–33.
[24]Z.L.Zhao and B.Z.Guo, Extended state observer for uncertain lower triangular nonlinear systems,Systems and Control Letters,85(2015), 100-108.
[25] B.Sun and B.Z.Guo,Convergence of an upwind finite-difference scheme forHamilton-Jacobi-Bellman equation in optimal control,IEEE Transactions on Automatic Control, 60(2015), 3012-3017.
[26] H.Feng and B.Z.Guo, On stability equivalence betweendynamic output feedback and staticoutput feedback for a class of second order infinite-dimensional infinite-dimensional systems, SIAM Journal on Control and Optimization,53(2015),1934-1955.
[27] G.J.Zheng, B.Z.Guo, and M.M.Ali, Continuous dependence of optimal controlto controlled domain of actuatorfor heat equation,Systems and Control Letters,79(2015), 30-38.
[28] B.Z.Guo and F.F.Jin,Output feedback stabilization forone-dimensional wave equation subject to boundary disturbance, IEEE Transactions on Automatic Control, 60(2015), 824-830.
[29]B.Z.Guo and D.H.Yang, Optimal actuator location for time and norm optimal control ofnull controllable heat equation, Mathematics ofControl, Signals, and Systems,27(2015), 23–48.
[30]B.Z.Guo and H.C.Zhou, The active disturbance rejection control to stabilization for multi-dimensional wave equationwith boundary control matched disturbance, IEEE Transactions on Automatic Control, 60(2015), 143-157.
[31] F.F.Jin and B.Z.Guo, Lyapunov approach to output feedback stabilization forEuler-Bernoulli beam equation withboundary, Automatica, 52(2015), 95-102.
[32] H.Feng and B.Z.Guo, Output feedback stabilization for unstable wave equation with general corrupted boundary observation, Automatica, 50(2014), 3164-3172.
[33] G.J.Zheng, B.Z.Guo, and M.M.Ali,Stability of optimal control of heat equation withsingular potential, Systems and Control Letters,74(2014) 18-23.
[34] B.Z.Guo and H.C.Zhou, Active disturbance rejection control for rejecting boundary disturbancefrom multi-dimensional Kirchhoffplatevia boundary control, SIAM Journal on Control and Optimization, 52(2014),2800-2830.
[35] Q.Zhang, J.M.Wang and B.Z.Guo, Stabilization of the Euler-Bernoulli equation via boundary connection with heat equation, Mathematics ofControl, Signals, and Systems, 26(2014), 77-118.
[36] B.Z.Guo and L.Zhang, Local null controllability ofChemotaxis system of parabolic-elliptic type, Systems and Control Letters, 65(2014), 106-111.
[37] R.L.Wen, S.G.Chai, and B.Z.Guo, Well-posedness and exact controllability offourth order Schrodinger equation with boundary control and collocated observation, SIAM Journal on Control and Optimization,52(2014),365-396.
[38]B.Z.Guo and Z.L.Zhao, On convergence of the nonlinear active disturbance rejection control for MIMOSystems,SIAM Journal on Control and Optimization, 51(2013), 1727-1757.
[39]B.Z.Guo and Z.L.Zhao, Weak convergence ofnonlinear high-gain tracking differentiator,IEEE Transactions on Automatic Control,58(2013),1074-1080.
[40] B.Z.Guo and F.F.Jin, The active disturbance rejection and sliding mode control approachto the stabilization ofEuler-Bernoulli beam equation withboundary input disturbance, Automatica, 49(2013), 2911-2918.
[41] W.Guo and B.Z.Guo, Parameter estimation and non-collocated adaptive stabilization for a wave equationsubject to general boundaryharmonic disturbance, IEEE Transactions on Automatic Control, 58(2013), 1631-1643.
[42] W.Guo and B.Z.Guo Adaptive output feedback stabilization for one-dimensional wave equation with corrupted observation by harmonic disturbance, SIAM Journal on Control and Optimization, 51(2013), 1679–1706.
[43]B.Z.Guo andF.F.Jin,Sliding mode and active disturbance rejection control to stabilization of one-dimensional anti-stable wave equations subject to disturbance in boundary input, IEEE Transactions on Automatic Control,58(2013),1269-1274.
[44]B.Z.Guo and D.H.Yang, On convergence of boundary Hausdorff measure and application to a boundary shape optimization problem, SIAM Journal on Control and Optimization, 51(2013), 253–272.
[45] B.Z.Guo and Z.C.Shao, Well-posedness and regularity for non-uniformSchrodinger andEuler-Bernoulli equations with boundary control and observation,Quarterly of Applied Mathematics,70(2012), 111-132.
[46] B.Z.Guo and D.H.Yang,Somecompactclasses of open sets under Hausdorffdistance and application toshape optimization,SIAM Journal on Control and Optimization, 50(2012), 222–242.
[47]B.Z.Guo and Z.L.Zhao, On the convergence of extended state observer for nonlinear systems with uncertainty, Systems and Control Letters, 60(2011), 420-430.
[48] M. Krstic, B.Z.Guo and A. Smyshlyaev, Boundary controllers and observers for the linearized Schrodinger equation, SIAM Journal on Control and Optimization, 49(2011), 1479–1497.
[49] J.M.Wang, B.Z.Guo and M.Krstic, Wave equation stabilization by delays equal to even multiples of the wave propagation time,SIAM Journal on Control and Optimization, 49(2011), 517–554.
[50]S.G.Chai and B.Z.Guo, Well-posedness and regularity ofNaghdi'sshell equationunderboundary control, Journal of Differential Equations, 249 (2010) , 3174-3214.
[51] B.Z.Guo and F.F.Jin, Arbitrary decay ratefor two connected strings with joint anti-damping by boundary output feedback, Automatica, 46(2010),1203-1209.
[52] B.Z.Guo and K.Y.Yang, Output feedback stabilization of a one-dimensional Schrodinger equation by boundary observation with time delay, IEEE Transactions on Automatic Control,55(2010), 1226 -1232.
[53] S.G.Chai and B.Z.Guo, Feedthrough operator for linear elasticity system with boundary control and observation, SIAM Journal on Control and Optimization, 48(2010),3708-3734.
[54] B.Z.Guo and T.T.Wu, Approximation of optimal feedback control: A dynamic programming approach, Journal of Global Optimization, 46(2010), 395-422.
[55]B.Z.Guo and Z.X.Zhang, Well-posedness of systems of linear elasticity with Dirichlet boundary control and observation, SIAM Journal on Control and Optimization, 48(2009), 2139-2167.
[56] A.Smyshlyaev, B.Z.Guo and M.Krstic, Arbitrary decay rate for Euler-Bernoulli beam by backstepping boundary feedback, IEEE Transactions on Automatic Control,54(2009), 1134-1140.
[57] B.Z.Guo and K.Y.Yang, Dynamic stabilization of an Euler-Bernoulli beam equation with time delay in boundary observation, Automatica, 45(2009), 1468-475.
[58] B.Z.Guo and W.Guo, The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control,Automatica, 45(2009), 790-797.
[59] B.Z.Guo and Z.C.Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations, Systems and Control Letters, 58 (2009),334-341.
[60] J.D.Chang and B.Z.Guo, Application of Ingham-Beuling type type theorems to coefficients identifiability of vibrating systems: finite time identifiability , Differential and Integral Equations, 21(2008), 1037-1054.
[61] B.Z.Guo, J.M.Wang and K.Y.Yang, Dynamic stabilization of an Euler-Bernoulli beam under boundary control and non-collocated observation, Systems and Control Letters, 57(2008), 740-749.
[62] M. Krstic, B.Z. Guo, A. Balogh, and A. Smyshlyaev, Control of a tip-force destabilized shear beam by non-collocated observer-based boundary feedback, SIAM Journal on Control and Optimization, 47(2008), 553-574. [GuoKrstic2.pdf]
[63]M. Krstic, B.Z.Guo, A. Balogh and A. Smyshlyaev, Output-feedback stabilization of an unstable wave equation, Automatica, 44(2008), 63-74.
[64] B. Z. Guo and Z.X. Zhang,Well-Posedness and regularity for anEuler-Bernoulli plate with variable coefficients and boundary control and observation, Mathematics of Control, Signals, and Systems, 19(2007), 337-360.
[65]B. Z. Guo and Z. C. Shao, On well-posedness, regularity and exact controllability for problems of transmission ofplate equation with variable coefficients,Quarterly of Applied Mathematics, 65(2007), 705-736.
[66] B.Z. Guo and B. Sun, Numerical solution to the optimal feedback control of continuous casting process, Journal of Global Optimization, 39(2007), 171-195.
[67] J.D. Chang and B.Z. Guo, Identification of variable spacial coefficients for a beam equation from boundary measurement, Automatica, 43(2007), 732-737.
[68] B. Z. Guo and C.Z. Xu,The stabilization of a one-dimensional wave equation by boundary feedback with non-collocated observation, IEEE Transactions on Automatic Control, 52(2007),371-377.
[69] B.Z. Guo and J. M. Wang, Remarks on the application of the Keldysh Theorem to the completeness of root subspace of non-self-adjoint operators and comments on \

相关热点

扫码添加好友