王立锋
近期热点
资料介绍
个人简历
教育经历2008.09–2011.07,中国矿业大学(北京)、北京应用物理与计算数学研究所,流体力学博士2005.09–2008.09,中国矿业大学(北京)、北京应用物理与计算数学研究所,理论物理硕士2001.09–2005.09,曲阜师范大学物理系,物理学学士工作经历2017.11–至今, 北京应用物理与计算数学研究所,研究员2014.07–2017.11,北京应用物理与计算数学研究所,副研究员2013.03–2014.07,北京应用物理与计算数学研究所,助理研究员2011.07–2013.03,北京大学工学院,博士后2010.09–2011.01,香港浸会大学数学系,研究助理个人荣誉、所获奖项2012年获全国蔡诗东等离子体物理奖2013年获全国百篇优秀博士学位论文2014年获中国工程物理研究院首届科技创新一等奖(排名第二)2015年入选中国工程物理研究院“双百人才工程”2016年获中央军委科学技术委员会军队科技进步二等奖(排名第二)研究领域
惯性约束聚变有望一劳永逸地解决人类的能源问题,受到国际社会的普遍重视,是目前国际研究的前沿热点之一。除聚变能源应用外,惯性约束聚变成为禁试后国防聚变研究的主要手段,是大国竞争的制高点。目前非线性流动控制是实现惯性约束聚变面临的最大科学障碍(属于内禀困难)。惯性约束聚变非线性流动问题是流体力学、计算科学、强冲击物理和高压原子物理等学科的交叉前沿研究课题。由于大规模多尺度数值模拟研究能力和高功率大型激光装置实验研究条件,近些年才刚刚具备,因此高能量密度非线性流动目前还是新兴研究课题,是崭新的流体物理研究前沿,充满了各种新奇的现象亟待探索。此外,流体力学不稳定性及其引起的湍流混合,也是天体物理现象(如星系碰撞与合并、恒星演化、原始恒星的形成以及超新星爆炸)中的重要过程,涉及天体物理的一些核心研究内容。由于高能量密度非线性流动研究具有聚变能源、国防工程和基础科学的强应用背景,我们研究团队近三十年,一直从事高能量密度非线性流动物理研究,提倡创新,注重理论探索和实验研究相结合,在重要流体力学不稳定性问题的解析理论、数值模拟和激光装置实验设计与数据分析等研究方面取得了一系列重要研究成果,开拓了高能量密度流体物理研究新方向,有力推动了该研究方向在国内的发展。近期论文
1. Lifeng Wang*, Wenhua Ye, Xiantu He, Junfeng Wu, Zhengfeng Fan, C. Xue, H. Y. Guo, W. Y. Miao, Y. T. Yuan, Jiaqin Dong, G. Jia, J. Zhang, Yingjun Li, J. Liu, M. Wang, Y. K. Ding, and W. Y. Zhang. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions. Sci. China-Phys. Mech. Astron. 60, 055201(2017)2. K. G. Zhao, C. Xue, L. F. Wang*, W. H. Ye, J. F. Wu, Y. K. Ding, W. Y. Zhang, and X. T. He. Two-dimensilnal thin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry. Phys. Plasmas 26, 022710 (2019)3. K. G. Zhao, C. Xue, L. F. Wang*, W. H. Ye, J. F. Wu, Y. K. Ding, W. Y. Zhang, and X. T. He. Thin shell mode for the nonlinear fluid instability of cylindrical shells. Phys. Plasmas 25, 092703 (2018)4. J. Zhang, L. F. Wang*, W. H. Ye, J. F. Wu, H. Y. Guo, Y. K. Ding, W. Y. Zhang, and X. T. He. Weakly nonlinear multi-mode Rayleigh-Taylor instability in two-dimensional spherical geometry. Phys. Plasmas 25, 082713 (2018)5. K. G. Zhao, L. F. Wang*, C. Xue*, W. H. Ye, J. F. Wu, Y. K. Ding, and W. Y. Zhang. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability. Phys. Plasmas 25, 032708 (2018)6. J. Zhang, L. F. Wang*, W. H. Ye*, H. Y. Guo, J. F. Wu, Y. K. Ding, W. Y. Zhang, and X. T. He. Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical and planar geometries. Phys. Plasmas 25, 022701 (2018)7. H. Y. Guo, L. F. Wang*, W. H. Ye*, J. F. Wu, J. Zhang, Y. K. Ding, W. Y. Zhang, and X. T. He. Nonlinear saturation of Rayleigh-Taylor instability in a finite-thickness fluid layer. Phys. Plasmas 24, 112708 (2017)8. J. Zhang, L. F. Wang*, W. H. Ye*, J. F. Wu, H. Y. Guo, W. Y. Zhang, and X. T. He. Weakly nonlinear incompressible Rayleigh-Taylor instability in spherical geometry. Phys. Plasmas 24, 062703 (2017)9. L. F. Wang*, W. H. Ye, J. F. Wu, Jie Liu, W. Y. Zhang, and X. T. He. Main drive optimization of a high-foot pulse shape in inertial confinement fusion implosions. Phys. Plasmas 23, 122702(2016)10. L. F. Wang*, W. H. Ye, J. F. Wu, Jie Liu, W. Y. Zhang, and X. T. He. A scheme for reducing deceleration-phase Rayleigh–Taylor growth in inertial confinement fusion implosions. Phys. Plasmas 23, 052713(2016)11. L. F. Wang*, J. F. Wu, H. Y. Guo, W. H. Ye, Jie Liu, W. Y. Zhang, and X. T. He. Weakly nonlinear Bell-Plesset effects for a uniformly converging cylinder. Phys. Plasmas 22, 082702(2015)12. L. F. Wang*, H. Y. Guo, J. F. Wu*, W. H. Ye*, Liu Jie, W. Y. Zhang, and X. T. He. Weakly nonlinear Rayleigh-Taylor instability of a finite-thickness fluid layer. Phys. Plasmas 21, 122710(2014)13. L F Wang*, W H Ye, W Y Zhang, and X T He. Numerical investigation of nonlinear ablative single-mode Rayleigh–Taylor instability in the presence of preheating. Phys. Scr. T155, 014018(2013)14. W. H. Liu, L. F. Wang*, W. H. Ye, and X. T. He. Temporal evolution of bubble tip velocity in classical Rayleigh-Taylor instability at arbitrary Atwood numbers. Phys. Plasmas 20, 062101(2013)15. L. F. Wang*, J. F. Wu, W. H. Ye*, W. Y. Zhang, and X. T. He*. Weakly nonlinear incompressible Rayleigh-Taylor instability growth at cylindrically convergent interfaces, Phys. Plasmas 20, 042708(2013)16. L. F. Wang*, J. F. Wu, Z. F. Fan, W. H. Ye*, X. T. He*, W. Y. Zhang, Z. S. Dai, J. F. Gu, and C. Xue. Coupling between interface and velocity perturbations in the weakly nonlinear Rayleigh-Taylor instability. Phys. Plasmas 19, 112706(2012)17. L. F. Wang*, W. H. Ye*, X. T. He*, W. Y. Zhang, Z. M. Sheng, and M. Y. Yu. Formation of jet-like spikes from the ablative Rayleigh-Taylor instability. Phys. Plasmas 19, 100701(2012)18. L. F. Wang*, B. L. Yang, W. H. Ye*, and X. T. He*. Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas. Phys. Plasmas 19, 072704(2012)19. W. H. Liu, L. F. Wang*, W. H. Ye*, and X. T. He*. Nonlinear saturation amplitudes in classical Rayleigh-Taylor instability at arbitrary Atwood numbers, Phys. Plasmas 19, 042705(2012)20. L. F. Wang*, W. H. Ye*, and X. T. He*. Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability. Phys. Plasmas 19, 012706(2012)标签:
相关热点