热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
辛欣
2023-05-06 11:48
  • 辛欣
  • 辛欣 - 副教授 博导-北京理工大学-计算机学院-个人资料

近期热点

资料介绍

个人简历


个人信息
  辛欣,博士后,博士生导师。
  主要经历:
  [1] 2002-2006,清华大学,获学士学位。
  [2] 2006-2008,清华大学,导师:李涓子&唐杰,获硕士学位。
  [3] 2008-2011,香港中文大学,导师:Irwin King&Michael R. Lyu,获博士学位。
  [4] 2011-2012,香港中文大学,博士后。
  [5] 2011-2012,参与美国AT&T公司项目研发,合作者:Ritesh Agrawal。
  [6] 2013-2014,微软铸星计划访问学者,导师:Chin-Yew Lin。
  [7] 2012-至今,北京理工大学,计算机学院,语言信息处理与社会计算团队,责任教授:黄河燕

研究领域


知识工程、机器学习、Web智能与社会计算、大学计算机等课程"承担科研情况
  近3年主持的主要项目
  [1] 国家自然科学基金面上项目,融合知识图谱的文本个性化推荐机制研究(61672100),2017年1月-2020年12月,项目负责人。
  [2] 国家自然科学基金青年项目,融合异构信息的低秩分解推荐模型研究(61300076),2014年1月-2016年12月,项目负责人。
  [3] 北京市自然科学基金面上项目,面向北京道路导航系统的稀疏轨迹数据协同建模(4162054),2016年1月-2018年12月,项目负责人。
  [4] 高等学校博士学科点专项科研基金,跨语言微博主题挖掘在线模型研究(20131101120035),2014年1月-2016年12月,项目负责人。
  [5] 北京理工大学“优秀青年教师资助计划”跨学科项目(2014YG0709),2015年1月-2015年12月,项目负责人。
  [6] 北京理工大学基础研究基金,协同过滤与特征表达联合优化推荐模型研究(20130742003),2014年1月-2015年12月,项目负责人。
  [7] 北京理工大学基础研究基金,社会推荐系统异构数据融合的矩阵分解建模(20120742008),2013年1月-2014年12月,项目负责人。
  
  近3年参与的主要项目
  [8] 国家重点基础研究发展计划(973计划),社交网络分析与网络信息传播的基础研究(2013CB329605),2013年1月-2017年12月,技术骨干
  [9] ×××预研项目,xxx处理技术,2011年1月-2014年12月,技术骨干
  [10] 国家863计划项目,基于大数据的类人智能关键技术与系统--类人智能知识理解与推理关键技术,2015.1-2017.12,技术骨干"

近期论文


代表性学术成果
A类论文
  [1] Rui Wang, Xin Xin*, Wei Chang, Kun Ming, Biao Li, Xin Fan. Chinese NER with Height Limited Constituent Parsing. In Proceedings of AAAI 2019 (oral).
  [2] Xin Xin*, Zhirun Liu, Chin-Yew Lin, Heyan Huang, Xiaochi Wei, Ping Guo. Cross-Domain Collaborative Filtering with Review Text. In proceedings of IJCAI 2015 (oral).
  [3] Xiaochi Wei, Heyan Huang, Chin-Yew Lin, Xin Xin*, Xianling Mao, Shangguang Wang. Re-Ranking Voting-Based Answers by Discarding User Behavior Biases. In proceedings of IJCAI 2015 (oral).
  [4] Xin Xin*, Chunwei Lu, Yashen Wang, and Heyan Huang. Forecasting Collector Road Speeds Under High Percentage of Missing Data. In proceedings of AAAI 2015 (oral).

  B类论文
  [5] Xin Xin*, Xiaochi Wei, Chin-Yew Lin, Heyan Huang. When Factorization Meets Heterogenous Latent Topics: An Interpretable Cross-Site Recommendation Framework. Journal of Computer Science and Technology, 2015.
  [6] Xin Xin*, Irwin King, Ritesh Agrawal, Michael R. Lyu, and Heyan Huang,Do Ads Compete or Collaborate? Designing Click Models with Full Relationship Incorporated, In Proceedings of CIKM 2012, pp. 1839-1843, 2012.
  [7] Xin Xin*, Kun Zhuang, Ying Fang, Heyan Huang, Online Cross-lingual PLSI for Evolutionary Theme Patterns Analysis, In proceedings of PAKDD 2013, 2013.
  [8] Xin Xin*, Michael R. Lyu, and Irwin King, CMAP: Effective Fusion of Quality and Relevance for Multi-criteria Recommendation, In proceedings of WSDM 2011, pp. 455-464, 2011.
  [9] Xin Xin*, Irwin King, Hongbo Deng and Michael R. Lyu, A Social Recommendation Framework Based on Multi-scale Continuous Conditional Random Fields, In procedings of CIKM 2009, pp. 1247-1256, 2009.
  [10] Xin Xin*, Juanzi Li, Jie Tang and Qiong Luo, Academic Conference Homepage Understanding Using Constrained Hierarchical Conditional Random Fields, In proceedings of CIKM 2008, pp. 1301-1310, 2008.

  C类论文:
  [11] Yanjun Li, Xin Xin*, Ping Guo. Neural Networks with Marginalized Corrupted Hidden Layer. In Proceedings of ICONIP 2015, 2015.
  [12] Xin Xin*,Zhirun Liu, Heyan Huang. A Nonlinear Cross-site Transfer Learning Approach for Recommender Systems. In proceedings of ICONIP 2014, 2014.
  [13] Yanjun Li, Ping Guo, Xin Xin*. An Improved Separating Hyperplane Method with Application to Embedded Intelligent Devices. In proceedings of ICONIP 2014, 2014.
  [14] Xin Xin*, Juanzi Li, and Jie Tang, Enhancing Semantic Web by Semantic Annotation: Experiences in Building an Automatic Conference Calendar, In proceedings of WI 2007, pp. 439-442, 2007.
  [15] Xiaochi Wei, Heyan Huang, Xin Xin, Xianxiang Yang. Distinguishing Social Ties in Recommender Systemsby Graph-Based Algorithms. In proceedings of WISE 2013, 2013.
  [16] Kun Zhuang, Heyan Huang, Xin Xin, Xiaochi Wei, Xianxiang Yang, Chong Feng, Ying Fang. A Unified Generative Model for Characterizing Microblogs' Topics. In proceedings of WAIM 2013, 2013.
  [17] Yao Yao, Xin Xin, Ping Guo, OMP or BP? A Comparison Study of Image Fusion Based on Joint Sparse Representation, In proceedings ICONIP 2012, pp. 75-82, 2012.
  [18] Song Lin, Ping Guo, Xin Xin*. Supervised Topic Regression via Experts. In proceedings of IJCNN 2014, 2014.

  其他论文
  [19] Wenliang Fu, Xin Xin*, Ping Guo, Zhou Zhou. A Practical Intrusion Detection System for Internet of Vehicles. China Communications, 2016.
  [20] You Ma, Xin Xin*, Shangguang Wang, Jinglin Li, Qibo Sun, Fangchun Yang. QoS Evaluation for Web Service Recommendation. China Communications, 2015.
  [21] Yao Yao, Ping Guo, Xin Xin*. Image Fusion by Hierarchical Joint Sparse Representation. Cognitive Computation, 2013.
  [22] Pei Luo, Xin Xin*, Kuai Zhang, Ping Guo, Yang Yu, Zichao Wang. Predicting the Number of Driving Service Orders in Fine-Grained Regions by An Ensemble Multi-View-Based Model. SMC 2017.
  [23] Kuai Zhang, Xin Xin*, Pei Luo, Ping Guo. Fine-grained News Recommendation by Fusing Matrix Factorization, Topic Analysis and Knowledge Graph Representation. SMC 2017
  [24] Jian Hu, Xin Xin*, Ping Guo. LSTM with Matrix Factorization for Road Speed Prediction. ISNN 2017.
  [25] Cuihua Ma, Ping Guo, Xin Xin, Xiaoyu Ma, Yanjie Liang, Shaomin Xing, Li Li, Shaozhuang Liu. Collaborative Response Content Recommendation for Customer Service Agents. ISNN 2017.
  [26] Qiang Pan, Xin Xin, Junshuai Liu, Ping Guo. Extracting Company-Specific Keyphrases from News Media. CIS 2017.
  [27] Junshuai Liu, Xin Xin, Li Li, Shaozhuang Liu, Xiaoyu Ma. A Multi-Level Encoder for Text Summarization. SSCI 2017.
  [28] Peng Ji, Xin Xin, Ping Guo. Fine-Grained Real Estate Estimation Based on Mixture Models. ISNN 2016.
  [29] Yanjun Li, Ping Guo, Xin Xin. A Divide and Conquer Method for Automatic Image Annotation. CIS 2016.
  [30] Yao Yao, Ping Guo, Xin Xin. A Rank Minimization-based Late Fusion Method for Multi-Label Image Annotation. ICPR 2016.
  [31] Xin Xin*, Heyan Huang. Learning to Display in Sponsored Search. Proceedings of the Workshop on Scalable Data Analytics: Theory and Applications (PAKDD workshop), 2014
  [32] Ying Fang, Heyan Huang, Ping Jian, Xin Xin*, Chong Feng. Self-Adaptive Topic Model: A Solution to the Problem of \
[1] ACM,IEEE,AAAI,CCF,KDD China会员。
  [2] 中文信息学会“知识图谱”专委会委员。
  [3] 国家自然科学基金函评审人。
  [4] NLPCC 2016 分会主席。
  [5] TKDE(CCF A类)、AAAI(CCF A类)、IJCAI(CCF A类)、WWW(CCF B类)、ICONIP(CCF C类)、WI(CCF C类)等期刊及会议论文审稿人

相关热点

扫码添加好友