徐兴忠
近期热点
资料介绍
个人简历
Educational Background1996年9月-1999年7月,在中国科学院系统科学研究所读博士,获理学博士学位;1982年9月-1985年7月,在华东师范大学数理统计系读硕士,获理学硕士学位;1978年9月-1982年7月,在华东师范大学数学系读本科,获理学学士学位。Working Experience2001年-10月-现在,在北京理工大学数学系任教授;1999年10月-2001年10月,在中国科学院应用数学所做博士后;1985年7月-1996年9月,在青岛海洋大学数学系任助教、讲师、副教授和教授近期论文
Publications [130] Li Zhao, Xingzhong Xu, Generalized Canonical Correlation Variable Improved Estimation in High Dimensional Seemingly Unrelated Regression Models. Statistics and Probability Letters, accepted.[129] Li Zhao, Liang Yan, Xingzhong Xu, High Correlated Residuals Improved Estimation in the High Dimensional SUR model. Submitted to Communications in Statistics-Simulation and Computation, accepted.[128] Liang Yan, Rui Wang, Xingzhong Xu, A new confidence interval in errors-in-variables model with known error variance. Journal of Applied Statistics, accepted,[127] Guimei Zhao,Xingzhong Xu Uniformly Most Powerful Unbiased Test in Univariate Linear Calibration, Statistics, accepted.[126] Liang Yan, Rui Wang, Xingzhong Xu, Fiducial inference in the classical errors-in-variables model, Metrika, 2017,80(1), 93-114.[125] Liang Yan, Xingzhong Xu, A new confidence interval in measurement error model with the reliability ratio known Communications in Statistics–Theory, and Methods, accepted.[124] Li Wang, Xingzhong Xu. Consistent variable selection via the optimal discovery procedure in multiple testing, Communications in Statistics–Theory and Methods. 2017,http://dx.doi.org/10.1080/03610926.2015.1069351.[123] Na LI and Xingzhong XU, Spline Multiscale Smoothing to Control FDR for Exploring Features of Regression Curves, Journal of Computational and Graphical Statistics, 2016[122] Li Wang, Xingzhong Xu, Yong A. New multiple testing method under no dependency assumption, with application to multiple comparisons problem,Statistical Papers, 2016, 57(1): 161-183[121] Pei Jin Xing-zhong Xu Na Li, FDR control for pairwise comparisons of normal means based on goodness of fit test,Acta Mathematicae Applicatae Sinica, English Series,July 2016, Volume 32, Issue 3, pp 701–712[120] Junguang Zhao, Xingzhong Xu, A generalized likelihood ratio test for normal mean when p is greater than n, Computational Statistics and Data Analysis, 2016, 99: 91-104.[119] *He Daojiang, Xu Kai, Xu Xingzhong, Random Weighting Empirical Distribution Function and its Applications to Goodness-of-Fit Testing, Communications in Statistics - Simulation and Computation, 44(6) 2015, pp 1441-1452.[118] Li Wang, Xingzhong Xu, Bonferroni-type Plug-in Procedure Controlling Generalized Familywise Error Rate, Communication in Statistics- Theory and Methods, 03/2015, 44(14), 3042-3055.[117] Xuhua Liu, Xingzhong Xu, A note on combined inference on the common coefficient of variation using confidence distributions, Electronic Journal of Statistics, Vol. 9 (2015) 219–233, ISSN: 1935-7524, DOI: 10.1214/15-EJS993[116] 张良勇、徐兴忠、董晓芳 ,基于非均等排序集抽样的符号检验 ,北京理工大学学报, 06期2015, pp 639-643.[115] 曹明响,徐兴忠,高维数据下MANOVA 检验,北京理工大学学报,35(8)2015,868-871[114]Liangyong Zhang,Xiaofang Dong,Xingzhong Xu,Nonparametric estimation for random censored data based on ranking set sampling,Communications in Statistics-Simulation and Computation,2014,43(8):2004-2015.[113] Guimei Zhao,Xingzhong Xu,The One-Sided Posterior Predictive p-value for Fieller’s Problem,Statistics and Probability Letters (2014), pp. 57-62[112] Li Wang, Xingzhong Xu, Global testing method for clustering means in ANOVA, Journal of the Korean Statistical Society, 43 (2014), 381–392[111] Jianxin Zhao, Xingzhong Xu, Goodness-of-fit tests for location–scale families based on random distance, Journal of Statistical Computation and Simulation 01/2014; 84(4).[110] Liangyong Zhang, Xiaofang Dong, Xingzhong Xu, Sign tests using ranked set sampling with unequal set sizes, Statistics &Probability Letters, 85, pp 69-77,2014.[109]Cao Mingxiang, Xu Xingzhong, He Daojiang, Linearly admissible estimators of stochastic regression coefficient under balanced loss function, Statistics, 48(2), pp 359-366, 2014.[108] 许凯;何道江;徐兴忠,正态-逆Wishart先验下多元线性模型中经验Bayes估计的优良性,数学年刊,2014年第3期[107] 董晓芳,张良勇,徐兴忠,随机删失模型下排序集样本的非参数估计及其应用,统计与决策,2014,418(22):72-74。[106] Daojiang He, Xingzhong Xu, Xuhua Liu, The Use of Posterior Predictive P-Values in Testing Goodness-of-Fit, Communications in Statistics- Theory & Methods 42(2013), 4287-4297.[105] Daojiang He and Xingzhong Xu, A goodness-of-fit testing approach for normality based on posterior predictive distribution, test, 2013, 22, 1-18.[104] HE Daojiang , XU Xingzhong , ZHAO Jianxin , A new procedure for testing normality based on the L2 Wasserstein distance, J. Systems Sci & Comp, 2013 Vol. 26 (4): 572-582 [103] 何道江 徐兴忠,贝叶斯χ~2检验的修正,系统科学与数学,2013,33(11),1272-1280[102]张良勇 徐兴忠 董晓芳,基于中位数排序集抽样的区间估计,山东大学学报(理学版),2013年12期。[101] Zhang, Lingyun; Xu, Xinzhong; Chen, Gemai,The Exact Likelihood Ratio Test for Equality of Two Normal Populations,AMERICAN STATISTICIAN, 2012,66(3), pp 180-184,.[100] Zhao, Jianxin; Xu, Xingzhong,New tests based on Rubin's empirical distribution function,Journal of Statistical Planning and Inference,142(6), pp 1356-1366, 2012/6.[99]Zhao, Junlong; Yin, Yuliang; Xu, Xingzhong,Penalized Weighted Variance Estimate for Dimension Reduction,Communications In Statistics - Theory and Methods,41(3), pp 453-473, 2012[98]Mu, Weiyan; Xu, Xingzhong,Inference for repeated measures models under heteroscedasticity,JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 25(6), pp 1158-1170, 2012/12.[97] Shuran Zhao, Xingzhong Xu and Xiaobo Ding, Fidcial inference under nonparametric situations, Journal of Statistical Planning and Inference, 2012, 142(10), 2779-2798.[96] Li Wang and Xingzhong Xu, Step-up procedure controlling generalized family-wise error rate, Statistics and Probability Letters, 2012, 82, 775-782.[95] 赵建昕,徐兴忠,一类相合的分位点型检验,应用数学学报, 01期, pp 168-188,2012[94] 赵建昕;徐兴忠,δ修正Cramer-von Mises检验的非无偏性(英文),应用概率统计,02期, pp 161-171, 2012[93] Na Li and Xingzhong Xu, Comparison of Nonparametric Regression Curves by Spline Smoothing, Communications in Statistics - Theory and Methods, 2011, 40(22), 3972-3987.[92] Na Li, Xingzhong Xu and Xuhua Liu, Testing the constancy in varying-coefficient regression models, Metrika, 2011, 74:409-438.[91] Xuhua Liu, Xingzhong Xu and Jianxin Zhao, A new generalized p-value approach for testing equality of coefficients of variation in k normal populations, Journal of Statistical Computation and Simulation, 2011, 81(9):1121-1130.[90] Na Li, Xingzhong Xu and Pei Jin, Testing the linearity in partially linear models, Journal of Nonparametric Statistics, 2011, 23: 99-114.[89] Xingzhong Xu, Qian Zhang and Xiaobo Ding, Hypothesis testing and confidence regions for the mean sojourn time of an M/M/1 queueing system, Communications in Statistics-Theory and Methods, 2011, 40: 28-39.[88] 尹玉良、赵俊龙、徐兴忠 ,正态模型下单边假设检验问题中频率与贝叶斯证据的一致性 ,北京理工大学学报, 08期, pp1001-1004, 2011 ,[87] 赵桂梅,徐兴忠,两个Weibull分布尺度参数比的推断,应用数学学报,2011年第2期。[86] 晋佩,徐兴忠,刘旭华,基于真假设比例广义推断的多重检验方法,北京理工大学学报,2011年第8期。[85] 牟唯嫣,徐兴忠,异方差下增长曲线模型的统计推断,北京理工大学学报,2011年第4期,497-500。[84] Xiaobo Ding, Xingzhong Xu and Shuran Zhao, On exactness and unbiasedness of confidence bands for a continuous distribution function, Science China Math, 2010, 53(10): 2665–2678.[83] Huimin Hu, Xingzhong Xu and Guoying Li, Generalized p-values for testing regression coefficients in partially linear models, Journal of Systems Science & Complexity , 2010, 23: 1118-1132.[82] Qian Zhang and Xingzhong Xu, Confidence intervals of performance measures for an M/G/1 queueing system, Communications in Statistics-Simulation and Computation , 2010, 39: 501–516.[81] Jianxin Zhao, Xingzhong Xu and Xiaobo Ding, New goodness of fit tests based on stochastic EDF, Communications in Statistics-Theory and Methods , 2010, 39: 1075–1094.[80] Xuhua Liu and Xingzhong Xu, A new generalized p-value approach for testing the homogeneity of variances, Statistics and Probability Letters , 2010, 80: 1486-1491.[79] 董岩,徐兴忠,左截尾双参数指数分布的可靠寿命的广义置信下限,应用概率统计, 2010年第3期。[78] 李娜,徐兴忠,固定设计点情形下回归函数值的区间估计,北京理工大学学报,2010年第10期。[77] 刘旭华,徐兴忠,李娜,一种可修系统稳态可用度的广义置信区间,北京理工大学学报,2010年 第05期。[76] 张倩,徐兴忠,M/H_k/1排队系统性能指标的估计,北京理工大学学报,2010年第06期。[75] Jianxin Zhao, Xingzhong Xu and Xiaobo Ding, Some new goodness-of-fit tests based on stochastic sample quantiles, Communications in Statistics-Simulation and Computation , 2009, 38: 571–589.[74] Xingzhong Xu, Xiaobo Ding and Shuran Zhao, A new confidence band for continuous cumulative distribution functions, Australian & New Zealand Journal of Statistics , 2009, 51: 305-318.[73] Junlong Zhao and Xingzhong Xu, Dimension reduction based on weighted variance estimate, Science in China Series A: Mathematics , 2009, 52(3): 539-560.[72] Xingzhong Xu, Xiaobo Ding and Shuran Zhao, New goodness-of-fit tests based on fiducial empirical distribution function, Computational Statistics and Data Analysis , 2009, 53: 1132-1141.[71] Weiyan Mu, Xingzhong Xu and Shifeng Xiong, Inference on system reliability for independent series components, Communication in Statistics-Theory and Methods ,38(2009):1-10.[70] Xingzhong Xu, Xiaobo Ding and Shuran Zhao, The reduction of the average width of confidence bands for an unknown continuous distribution function, Journal of Statistical Computation and Simulation , 2009, 79: 335-347.[69] 刘旭华,徐兴忠,何雄奎,张录达. 有监督主成分回归法在近红外光谱定量分析中的应用研究,光谱学与光谱分析,2009,29:2959-2961. [68] 赵建昕,徐兴忠,检验统计量的选择,统计与决策,2009年 第04期。 [67] 赵树然,徐兴忠,丁晓波,右删失情形下平均生存时间的加权Bootstrap推断,系统科学与数学,2009年 第05期。[66] 牟唯嫣,熊世峰,徐兴忠,非参数可靠性模型中一些参数的区间估计,北京理工大学学报,2009年 第02期。[65] Shuran Zhao, Xingzhong Xu and Xiaobo Ding, The convergence rates of the weighted bootstrap distributions for von Mises and U-statistics, Journal of Nonparametric Statistics , 2008,20, 645 - 660. [64] Shifeng Xiong, Weiyan Mu and Xingzhong Xu, Generalized inference for a class of linear models under heteroscedasticity, Communications in Statistics: Theory and Methods , 2008,37: 1225-1236.[63] Weiyan Mu, Shifeng Xiong and Xingzhong Xu, Generalized confidence regions of fixed effects in the two-way ANOVA, Journal of Systems Science and Complexity ,2008, 21: 276-282.[62] Jianjun Ma,Xingzhong Xu and Junlong Zhao, Inverse Regression in Binary Response LDV Model Communications in Statistics—Theory and Methods 2008 37: 233–246.[61] Xingzhong Xu and Fang Liu, Statistical inference on mixing proportion, Science in China: Series A Mathematics , 2008, 51(9), 1593-1608. [60] 赵俊龙,徐兴忠,已有降维方法的推广,数学年刊 A 2008, 29(2), 231—240。 [59] 丁晓波,徐兴忠,基于非参数分布函数置信带的含参数分布函数调和带,山西大学学报,2008, 3,349-354.[58] 马建军,徐兴忠,多项Probit模型中回归系数的逆回归估计,应用概率统计,2008,24(5),501-512.[57] 马建军,徐兴忠,多元秩-序模型中回归系数的估计,高校应用数学学报,2008,23(3):287-294。[56] 刘芳,徐兴忠,混合位置尺度分布中分量参数的统计推断,生物数学学报,2008,23(3),539-548。[55] 马建军,徐兴忠,多重二元响应Probit模型的渐近有效估计,生物数学学报,2008年 第04期。[54] 董岩,徐兴忠,杨雪姣,双参数指数分布的可靠寿命的广义置信下限,系统科学与数学,2008年 第09期。[53] 赵树然,徐兴忠,任培民,删失回归模型的加权Bootstrap逼近,北京理工大学学报,2008年 第07期。 [52] 丁晓波,徐兴忠,基于Kolmogorov-Smirnov统计量的连续置信带,北京理工大学学报, 2008年 第10期。[51] Xinmin Li, Xingzhong Xu and Guoying LI, A fiducial argument for generalized p-value, Science in China: Series A Mathematics 2007 50 (7): 957-966. [50] Junlong Zhao, Xingzhong Xu, Extending SAVE and PHD, Communications in Statistics- Theory and Methods , 2007, 36(8), 1591-1606. [49] 扈慧敏,杨荣,徐兴忠,单因素方差分析模型中的广义p-值,中国科学院研究生院学报,2007,24(4),408-418。[48] 扈慧敏,芮杰,徐兴忠,回归误差方差的区间估计,中国石油大学学报(自然科学版),2007,31(4),162-167。[47] 扈慧敏,徐兴忠,双因素方差分析模型中的广义p-值,北京理工大学学报,2007,27(9),843-846。[46] 刘芳,徐兴忠,混合位置分布中分量参数的统计推断,高校应用数学学报:A辑 2007,22(3):301-310。[45] 牟唯嫣,徐兴忠,熊世峰,两因素随机效应模型下平均暴露量的检验,系统科学与数学,2007,27:134-144。[44] Min Wang, Baoxue Zhang and Xingzhong Xu, The fiducial inference on the two-parameter exponential distribution, Soochow Journal of Mathematics 2006,32(4),477-484.[43] Xingzhong Xu and Guoying Li, Fiducial inference in the pivotal family of distributions, Science in China: Series A Mathematics , 49(3)(2006),410-432.[42] 赵俊龙,徐兴忠,位置参数分布族中Fiducial分布与后验分布的关系,数学年刊 A 2006, 3: 471—424。[41] Li,Xinmin, Li Guoying, Xu Xingzhong, Fiducial intervals of restricted parameters and their applications, Science in China: Series A Mathematics , 48(11)(2005),1567-1583.[40] Xingzhong Xu, Qiguang Wu, NS Condition of admissibility for the linear estimator of normal mean with unknown variance, Acta Mathematica Sinica, English Series, 21(2005),1083-1086.[39] 李新民,李国英,徐兴忠,限制参数空间上的Fiducial推断,系统科学与数学 25(6)(2005),729-737。[38] 刘金燕,徐兴忠,多周期Probit模型中MLE的存在性,应用数学,17(增)(2004),85-89。[37] 赵江涛,徐兴忠,多项Probit模型参数的极大似然估计,应用数学,17(增)(2004),90-93。[36] 孙立敏,徐兴忠,多元秩-序模型MLE的存在性,应用数学,17(增)(2004),115-119。[35] 董岩,徐兴忠,鹿长余,Admissible quadratic estimators of error variance with ellipsoid constraint,应用概率统计,19:1(2003), 19-26. [34] 张立振,徐兴忠,协方差阵二次型容许估计的一个必要条件,青岛海洋大学学报, 32:2(2002), 325-328。[33] 张立振,徐兴忠,协方差阵二次型估计可容许的充要条件,青岛海洋大学学报,2002年第04期。[32] 吴启光,徐兴忠,带有结构变化的线性模型中参数估计的一些结果,数学年刊 2001, 22A(5), 609-618. [31] 张立振,徐兴忠,协方差阵的二次型容许估计,青岛海洋大学学报,2001年 第06期。[30] 徐兴忠,吴启光,平衡损失下回归系数的线性容许估计,数学物理学报,2000, 20(4), 468-473。[29] 徐兴忠,吴启光,Karlin定理的推广和应用, 高校应用数学学报,2000,15(2), 192-198. [28] 李俊海,徐兴忠,陈峥,增长曲线模型中向量函数的线性容许性,应用概率统计,2000, 16(2), 145-151.[27] 李新民,徐兴忠,秦前清,矩阵损失下一类相依回归模型中的线性容许性估计和 Minimax估计 应用概率统计,2000, 16(1), 25-30。[26] 徐兴忠,吴启光,协方差的二次容许性估计,应用数学学报,2000, 23(1), 141-150。[25] 孙卓昕,徐兴忠,二次损失下方差分量模型回归系数的线性容许估计,应用数学学报,21(3)(1998),393-403。[24] 徐兴忠,钟漫如,不变二次损失下期望向量的线性容许估计,应用概率统计,14(1)(1998),17-23。[23] Xingzhong Xu,Local canonical correlation coefficients and canonical variables of groups of random variables, Chinese Science Bulletin 1998, 43(10), 815-816.[22] 赵建昕,徐兴忠,两个尺度参数估计的线性容许性,青岛大学学报,1998年 第01期。[21] 徐兴忠,矩阵损失下多元统计中期望相量的线性Minimax估计,应用概率统计,13(4)(1997),345-352。[20] 陈峥,徐兴忠,钟漫如,误差方差二次型估计时模型的转化,青岛海洋大学学报,27(3)(1997),425-430。[19] 张立振,徐兴忠,二类增长曲线模型误差估计---二次型估计,青岛海洋大学学报,27(1)(1997),121-125。[18] 徐兴忠,韩世华,具有独立贡献的相依回归模型,系统科学与数学,16(4)(1996),301-310。[17] 赵建昕,徐兴忠,两个尺度参数线性函数估计的线性容许性,应用概率统计,12(2)(1996)182-188。[16] Xingzhong Xu,The canonical correlation coefficients and canonical variables of groups of random variables, Chinese Science Bulletin ,41(15)(1996), 1238-1243.[15] 徐兴忠,正态线性模型中误差方差的二次型估计的容许性,数学学报,39(5)(1996),609-618。[14] 徐兴忠,多元统计中期望向量的线性容许估计,应用数学学报,19(2)(1996),196-202。[13] 徐兴忠,钟漫如,多指标综合评判的组合方法,青岛海洋大学学报(社会科学版),1996年第01期。[12] 徐兴忠,常用正态协方差阵估计的非容许性,应用概率统计,11(4)(1995),367-370。[11] 刘新国,徐兴忠,G.W.Stewart一个待解问题的肯定回答,高等学校计算数学学报,17(1)(1995),31-35。[10] 徐兴忠,损失函数的选择,应用概率统计,10(2)(1994),183-193。[9] 徐兴忠,仅依赖于子样方差的一些估计是正态方差的非容许估计,数理统计与应用概率,8(1)(1993),55-61。[8] 徐兴忠,二次损失下方差分量模型中回归系数线性估计的L- 可容许性,系统科学与数学,13(4)(1993),136-142。[7] 徐兴忠,二次损失下一般的回归系数线性估计的容许性,青岛海洋大学学报,23(3)(1993),136-142。[6] 徐兴忠,二次损失下回归系数的线性Minimax估计,数学年刊,14A(5)(1993),410-427。[5] 徐兴忠,线性模型中误差方差的二次型估计是D-可容许的充要条件,应用数学学报,15(3)(1992),410-427。[4] 徐兴忠,线性模型下的不完全样本,青岛海洋大学学报,21(4)(1991),109-117。[3] 徐兴忠,矩阵损失下回归系数的线性Minimax估计,系统科学与数学,10(4)(1990),296-300。[2] 徐兴忠,王静龙,多项式损失下二次型估计的可容许性,数学年刊,9(2)(1988),171-177。[1] 徐兴忠,王静龙,协方差阵的二次型估计的容许性问题,华东师范大学学报,3(1986),19-26。 相关热点