礼欣
近期热点
资料介绍
个人简历
个人信息 礼欣,博士,博士后。 吉林大学学士、硕士,师从孙吉贵教授。香港浸会大学(Hong Kong Baptist University)博士、博士后,师从Dr. William K. Cheung 与 Prof. Jiming Liu。曾作为访问学者访问University of Waterloo, Canada (Host: Prof. Pascal Poupart),作为高级访问学者访问University of Technology Sydney, Australia (Host: Prof. Ivor W. Tsang). 目前主要从事数据挖掘、深度学习、强化学习、表示学习的相关理论研究和技术应用。近年来以第一作者及通讯作者身份在ICML、IJCAI、AAAI、ECML-PKDD、IEEE TCYB、TOIS、TKDE等人工智能、机器学习领域的知名国际会议和期刊发表若干篇学术论文。自2010-2019年担任The IEEE Intelligent Informatics Bulletin, Assistant Managing Editor。 在学生指导方面,鼓励并推荐学生交流访问,指导的研究生同学曾赴香港浸会大学、香港理工大学、美国斯坦福大学、澳大利亚悉尼科技大学访问。指导的硕士研究生发表多篇CCF A类会议论文,CCF A类/SCI一区期刊论文,并获得国家奖学金。毕业研究生去向包括微软、阿里、字节跳动、腾讯、京东、美团,滴滴等知名企业,或中国招商银行(总行),中国工商银行(总行),中科院电子所,中科院信工所,中国外交部等企事业单位研究领域
机器学习、深度(强化)学习、表示学习理论及应用,包括: 复杂网络数据挖掘、城市计算、医疗及公共卫生领域的应用,如:疾病诊断/预测; 以及深度学习/深度强化学习技术在工业大数据、机器人领域的应用"承担科研情况 作为项目负责人、子课题负责人,获得基金支持的项目包括: 2018.01 - 2021.12 国家自然科学基金面上项目:61772074,项目负责人 2017.09 - 2020.09 国家重点研发计划,网络空间安全重点专项,**发现与**预测项目,子课题负责人 2014.01 - 2016.12 国家自然科学基金青年项目:61300178,项目负责人 2013.01 - 2017.08 国家重点基础研究发展计划(973项目):社交网络分析与网络信息传播,子课题负责人 2012.01 - 2014.12 教育部博士点新教师基金:20111101120030,项目负责人 2012.01 - 2013.12 北京理工大学基础研究基金,项目负责人 2010.01 - 2011.12 符号计算与知识工程教育部重点实验室对外开放基金项目,项目负责人 作为主要参与人参与的其他项目还包括: 自然科学基金重点项目:无源感知网路基础理论与关键技术(61432015)"近期论文
代表性学术成果 CCF A/B类会议论文 [1] Li Zhang, Xin Li*, et al. “Universal Value Iteration Networks: When Spatially-Invariant Is Not Universal”, in Proceedings of AAAI Conference on Artificial Intelligence (AAAI), Pages: 6778-6785, Aug., 2019, February, 2020, New York City, USA. [2] Rui Ye, Xin Li*, et al. “A Vectorized Relational Graph Convolutional Network for Multi-Relational Network Alignment”, in Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), Pages: 4135-4141, Aug., 2019, Macao, China. [3] Jing He, Xin Li*, Lejian Liao, et al, “Inferring Continuous Latent Preference on Transition Intervals for Next Point-of-Interest Recommendation”, ECML/PKDD (2) 2018: 741-756, Sept. 2018, Dublin, Ireland. [4] Shengnan Li, Xin Li*, et al. “Non-translational Alignment for Multi-relational Networks”, in Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI), Pages: 4180-4186, Aug., 2018, Stockholm, Sweden. [5] Lin Liu, Xin Li*, William K. Cheung, Chengcheng Xu, “A Structural Representation Learning for Multi-relational Networks”, in Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), Pages: 4047-4053, Aug., 2017, Melbourne, Australia. Source Code:https://github.com/luoxiaolin521/MNE [6] Jing He, Xin Li*, Lejian Liao, “Category-aware Next Point-of-Interest Recommendation via Listwise Bayesian Personalized Ranking”, in Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), Pages: 1837-1843, Aug., 2017, Melbourne, Australia. Source Code:https://github.com/skyhejing/IJCAI2017 [7] Jing He, Xin Li*, Lejian Liao, Dandan Song, William K. Cheung, Inferring A Personalized Next Point-of-Interest Recommendation Model with Latent Behavior Patterns, in Proceedings of AAAI Conference on Artificial Intelligence (AAAI), Pages: 137-143, February, 2016, Phoenix, Arizona USA. Source Code:https://github.com/skyhejing/AAAI2016 [8] Li Liu, William K. Cheung, Xin Li*, Lejian Liao, “Aligning Users Across Social Networks Using Network Embedding”, in Proceedings of the 25th International Joint Conf0erence on Artificial Intelligence (IJCAI), Pages: 1774-1780, July, 2016, New York City, USA. Source Code:https://github.com/ColaLL/AcrossNetworkEmbeddingSynthetic [9] Xin Li*, William K. Cheung, Jiming Liu, Zhili Wu, “A Novel Orthogonal NMF-Based Belief Compression for POMDPs”, in Proceedings of 24th International Conference on Machine Learning (ICML), Pages: 537 -544 Corvallis, OR, US, 2007. arXiv论文 [1] Pengfei Zhu, Xin Li*, Pascal Poupart, “On Improving Deep Reinforcement Learning for POMDPs ”. CoRR abs/1704.07978(2017) . Source Code:https://github.com/bit1029public/ADRQN [2] Huiting Hong, Xin Li*, et al.“GANE: A Generative Adversarial Network Embedding”. CoRR abs/1805.07324 (2018) . 期刊论文 [1] Xin Li, Dongcheng Han, Jing He, Lejian Liao, Mingzhong Wang: Next and Next New POI Recommendation via Latent Behavior Pattern Inference. ACM Trans. Inf. Syst. 37(4): 46:1-46:28 (2019) (CCF A类期刊) [2] Xin Li, et al., “Deep trajectory: a deep learning approach for mobile advertising in vehicular networks”, Neural Computing and Applications (NCAA), 31(7): 2813-2825 (2019) [3] Jing He, Xin Li*, Lejian Liao, “Next Point-of-Interest Recommendation via a Category-aware Listwise Bayesian Personalized Ranking”, Journal of Computational Science (JOCS), 28: 206-216 (2018) [4] Xin Li, Mingming Jiang, Huiting Hong, Lejian Liao, “Time-aware Personalized Point-of-Interest Recommendation via High-order Tensor Factorization”, ACM Trans. Inf. Syst. 35(4): 31:1-31:23 (2017) (CCF A类期刊) [5] Meng Zhou, Xin Li*, Lejian Liao, “On preventing location attacks for Urban Vehicular Networks” , Mobile Information System (MIS), Volume 2016, Pages:1-13, December 2016 [6] Jialiang Chen, Xin Li*, William K. Cheung, Kan Li, “Effective Successive POI Recommendation Inferred with Individual Behavior and Group Preference”, Neurocomputing 210: 116-129 (2016) [7] Chunshan Li, William K. Cheung, Yunming Ye, Xiaofeng Zhang, Dian-Hui Chu, Xin Li: The Author-Topic-Community model for author interest profiling and community discovery. Knowledge and Information System (KAIS) 44(2): 359-383 (2015) (CCF B类期刊) [8] Xin Li, William K. Cheung, Jiming Liu, \ [1] IEEE, CCF 会员 [2] The IEEE Intelligent Informatics Bulletin, Assistant Managing Editor (2010-2019) [3] IUCC 2015, HENA 2016, CIKM 2017, 2019, AAAI 2018, 2019, IJCAI 2018, 2019, NeurIPS 2019 PC member [4] TKDE, TOC, TNNLS, TOIS, TNSM, 电子学报等期刊审稿人 相关热点