马万彪
近期热点
资料介绍
个人简历
教育经历1983 内蒙古师范大学数学系获学士学位1986 河北师范大学/内蒙古师范大学数学系获硕士学位1997 日本国立静冈大学大学院获博士学位 工作经历1986-1993 内蒙古师范大学数学系任助教,讲师,副教授1993-1994 日本国立京都大学访问学者1998-2001 日本大阪府立大学,静冈大学任共同研究员,助手,副教授2001-2003 北京科技大学数力系任副教授2003-现在 北京科技大学数力系,应用数学系任教授(2011.7-2016.2:应用数学系主任)研究领域
(1) 泛函微分方程与差分系统的稳定性理论; (2) 种群生态学、流行病学、细胞生物学、病毒与免疫学、人工神经网络等领域相关实际问题的动力学建模及理论与数值分析"科研业绩:1. 生态动力系统的定性分析近期论文
论文论著:在[科学通报]、[数学学报]、[数学年刊]、[数学物理学报]、[系统科学与数学]、[应用数学学报]、[SIAM J. Appl. Math.]、[Nonl. Anal. TMA]、[Nonl. Anal. RWA]、[J. Math. Anal. Appl.]、[J. Optim. Theory Appl.]、[Tohoku Math. J.]、[Bull. Math. Biosci.]、[Math. Biosci. Eng.]、[Discrete Contin. Dyn. Syst.-B]、[Appl. Math. Letters]、[Appl. Math. Modelling]、[J. Comput. Appl. Math.]、[Appl. Math. Comput.]、[Rocky Mountain J. Math.]、[J. Biol. Syst.]、[Int. J. Biomath.]、[J. Math. Chem.]、[Dyn. Contin. Discrete Impul. Syst.]、[Math. Methods Appl. Sci.]、[Japan J. Indust. Appl. Math.]、[Math. Compt. Simul.]、[Elect. J. Differ. Equations]、[J. Appl. Math.]、[Comput. Math. Methods Medicine]、[J. Natl. Sci. Found. Sri Lanka]、[Int. J. Wavelets Multiresolut. Inf. Process.]、[Int. J. Control, Auto., Syst.]、[Chaos Solitons and Fractals.]、[Neurocomputing]、[Int. J. Bifurcat. Chaos]等学术杂志合作发表论文130余篇, 其中SCI检索60余篇, 总被引700余次, 3篇论文入选ESI高被引论文. 联合主编国际会议论文集2部, 联合翻译译著1本.主要论文:一、部分中文论文[1] 马万彪, 一类非线性系统的稳定性, 科学通报, 31(1986), 1036.[2] 马万彪, 超越函数的零点全分布在复数左半平面的代数判定准则, 科学通报, 31(1986), 558; 或 Chinese Science Bulletin, 31(1986), 1508. [3] 马万彪, 一类大系统的稳定性, Chinese Science Bulletin, 32(1987), 136-137.[4] 马万彪, 具有时滞的非线性控制系统的全局稳定性和全局指数稳定性, 数学学报, 31(1988), 88-94.[5] 马万彪, 具有时滞的线性差分系统的全局稳定性, Chinese J. Contemp. Math., B(1988), 185 -191; 或 数学年刊, 9A(1988), 224-228.[6] 马万彪, 用向量V函数法研究线性时滞微分大系统的稳定性, 应用数学学报, 12(1989), 24-29.[7] 斯力更, 马万彪, 中立型线性自治系统渐近稳定的代数判定准则, Chinese Science Bulletin, 33(1988), 1059-1061; 或 科学通报, 32(1987), 1208-1210.[8] 斯力更, 马万彪, 反向时滞微分不等式及应用, 科学通报, 33(1988), 1130-1133.[9] 斯力更, 马万彪, 一类时滞积分微分不等式, Chinese Science Bulletin, 35(1990), 342- 344; 或 科学通报, 34(1989), 394-395.[10] 斯力更, 马万彪, 超中立型泛涵微分方程的稳定性及应用, 应用数学学报, 13(1990), 265 - 280.[11] 马万彪, 具有无界时滞的中立型微分大系统的不稳定性, 数学杂志, 13(1993), 525-533.[12] 马万彪, 中立型积分微分方程的稳定性, 数学年刊, 15A(1994), 74-81.[13] 马万彪, 非线性离散不等式及其应用, 应用数学学报, 17(1994), 613-620.[14] 斯力更, 马万彪, 非线性无穷时滞微分大系统的稳定性, 数学学报,38(1995), 412-417.[15] 付桂芳, 马万彪, 由微分方程所描述的微生物连续培养动力系统-(I), 微生物学通报, 31(2004), 136-139.[16] 付桂芳, 马万彪, 由微分方程所描述的微生物连续培养动力系统-(II), 微生物学通报, 31(2004), 128-131.[17] 靳 欣, 马万彪, 胸腺细胞发育的非线性动力系统模型的定性分析, 数学的实践与认识, 36(2006). 99-109.[18] 马万彪, 张尚国, 具有时滞的Hopfield神经网络系统全局稳定的充要条件,生物数学前沿,生物数学丛书,陆征一、王稳地主编,81-90,科学出版社,北京, 2008[19] 董庆来, 马万彪, 具有时滞和可变营养消耗率的比率型Chemostat模型的稳定性分析系统科学与数学, 29(2) (2009), 228–241.[20] 侯博阳, 马万彪, 一类具有Beddington-DeAngelis型功能反应函数的HIV病毒动力学系统模型的稳定性, 数学的实践与认识, 39(12)(2009), 71-79.[21] 董庆来, 马万彪, 具有Crowley-Martin型功能反映函数恒化器系统的渐近形态,系统科学与数学, 38(2013), 922-929.[22] 闫海, 王华生, 刘晓璐, 尹春华,许倩倩, 吕乐, 马万彪, 微囊藻毒素微生物降解途径与分子机制研究进展, 环境科学, 35(2014), No.3, 1205-1214.[23] 邰晓东, 马万彪, 郭松柏, 闫海, 尹春华, 微生物絮凝的时滞动力学建模与理论分析, 数学的实践与认识, 45(2015), No.13, 198-209.二、部分英文论文(2000 - )[1] Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with varying population size and finite incubation times, Nonl. Anal. TMA, 42 (2000), 931-947. [2] W. Ma, T. Hara and Y. Takeuchi, Stability of a 2-dimensional neural network with time delays, J. Biol. Syst., 8(2000), 177-193. [3] E. Beretta, T. Hara, W. Ma and Y. Takeuchi, Global asymptotic stability of an SIR epidemic models with distributed time delay, Nonl. Anal. TMA, 47(2001), 4107-4115.[4] Y. Saito, W. Ma and T. Hara, Necessary and sufficient conditions for permanence of a Lotka - Volterra discrete systems with delays, J. Math. Anal. Appl., 256(2001), 162-174.[5] Y. Saito, T. Hara and W. Ma, Harmless delays for permanence and impersistence of a Lotka - Volterra discrete predator-prey system, Nonl. Anal. TMA, 50(2002), 705-715.[6] W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed time delays, Tohoku Math. J., 54(2002), 581-591.[7] T. Amemiya and W. Ma, Global asymptotic stability of nonlinear delayed systems of neutral type, Nonl. Anal. TMA, 54(2003), 83-91.[8] W. Ma and Y. Takeuchi, Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate, Discrete Contin. Dyn. Syst.-B, 4(2004), 671-678.[9] M. Yamaguchi, Y. Takeuchi and W. Ma, Population dynamics of sea bass and young sea bass, Discrete Contin. Dyn. Syst.-B, 4(2004), 833-840.[10] W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Letters, 17(2004),1141-1145.[11] G. Fu, W. Ma and S. Ruan, Qualitative analysis of a Chemostat model with inhibitory exponential substrate uptake, Chaos, Solitons and Fractals., 23(2005), 873-886.[12] M. Song, W. Ma, and Y. Takeuchi, Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay, Dyn. Contin. Discrete Impul. Syst., 13 (2006), 199-208.[13] H. Shi and W. Ma, An improved model of T cell development in the thymus and its stability analysis , Math. Biosci. Eng., 3(2006), 237-248.[14] G. Fu and W. Ma, Hopf bifurcations of a variable yield chemostat model with inhibitory exponential substrate uptake, Chaos, Solitons and Fractals, 30 (2006), 845–850.[15] Y. Takeuchi and W. Ma, Delayed SIR Epidemic Models for Vector Diseases, Mathematics for Life Science and Medicine, Springer, 2007, 51-65.[16] Dan Li and W. Ma, Asymptotic Properties of a HIV-1 Infection Model with Time Delay, J. Math. Anal. Appl., 335 (2007), 683–691. ESI高被引论文[17] M. Song, W. Ma and Y. Takeuchi, Permanence of a Delayed SIR Epidemic Model with Density Dependent Birth Rate, J. Compt. Appl. Math., 201(2007), 389-394.[18] Y. Yamaguchi, Y. Takeuchi and W. Ma, Dynamical Properties of a Stage Structure Three- species Model with Intra-guild Predation, J. Compt. Appl. Math., 201(2007), 327-338.[19] S. Zhang and W. Ma, Global stability of a Hopfield neural network with multiple time delays,J. Biomath., 23(2008), 1-10.[20] S. Zhang, W. Ma and Y. Kuang, Necessary and sufficient conditions for global attractivity of Hopfield type neural networks with time delays, Rocky Mountain J. Math., 38(2008), 1829-1840 [21] Z. Hu, Y. Yu and W. Ma, The analysis of two epidemic models with constant immigration and quarantine, Rocky Mountain J. Math., 38(2008), 1421-1436 [22] W. Ma, Y. Saito, Y. Takeuchi, M-matrix structure and harmless delays in a Hopfield-type neural network, Appl. Math. Letters, 22 (2009), 1066-1070. [23] Z. Hu, X. Chen, W. Ma, Analysis of an SIS Epidemic Model with Temporary Immunity and Nonlinear Incidence Rate, Chinese J. Eng. Math. , 26(3)(2009), 407-415.[24] H. Shi, W. Ma, Z. Duan, Global asymptotic stability of a nonlinear time-delayed system of T cells in the thymus, Nonl. Anal. TMA, 71 (2009), 2699-2707.[25] G. Huang, W. Ma, Y. Takeuchi, Global properties for virus dynamics model with Beddington - DeAngelis functional response, Appl. Math. Letters, 22 (2009), 1690-1693.[26] Z. Hu, X. Liu, H. Wang, W. Ma, Analysis of the dynamics of a delayed HIV pathogenesis model, J. Compt. Appl. Math., 234(2010), 461-476. [27] Z. Hu, G. Gao and W. Ma, Dynamics of athree-species ratio-dependent diffusive model, Nonl. Anal. RWA, 11(2010), 2106-2114. [28] G. Huang, Y. Takeuchi, W. Ma, D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72(2010), 1192-1207. ESI高被引论文[29] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70(2010), 2693–2708. ESI高被引论文[30] G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington – DeAngelis functional response, Appl. Math. Letters, 24 (2011), 1199-1203. [31] Z. Hu, P. Bi, W. Ma and S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate, Discrete Contin. Dyn. Syst.-B, 15( 2011), 93–112. [32] Y. Zhang, W. Ma, H. Yan and Y. Takeuchi, A dynamic model describing heterotrophic culture of chlorella and its stability analysis, Math. Biosci. Eng., 8( 2011), 1117–1133.[33] X. Liu, H. Wang, Z. Hu and W. Ma, Global stability of an HIV pathogenesis model with cure rate, Nonl. Anal. RWA, 12 (2011), 2947–2961. [34] L. Chen and W. Ma, A nonlinear delay model describing the growth of tumor cells under immune surveillance against cancer and its stability analysis, Int. J. Biomath., 5(2012), 1260017 (13 pages).[35] Y. Liu, W. Ma and Magdi S. Mahmoud, New results for global exponential stability of neural networks with varying delays, Neurocomputing, 97(2012), 357-363.[36] Y. Dong and W. Ma, Global properties for a class of latent HIV infection dynamics model with CTL immune response, Int. J. Wavelets Multiresolut. Inf. Process., 10 (2012), 1250045(19 pages).[37] Z. Hu, W. M and S. Ruan, Analysis of SIR epidemic models with nonlinear incidence rate and treatment, Math. Biosci., 238 (2012), 12–20.[38] Q. Dong and W. Ma, Qualitative analysis of the Chemostat model with variable yield and a time delay, J. Math. Chem., 51(2013), 1274–1292.[39] Q. Dong, W. Ma and M. Sun, The asymptotic behavior of a Chemostat model with Crowley – Martin type functional response and time delays, J. Math. Chem., 51 (2013), 1231–1248.[40] S. Zhou, Z. Hu, W. Ma and F. Liao, Dynamics Analysis of an HIV Infection Model including Infected Cells in an Eclipse Stage, J. Appl. Math., Volume 2013, Article ID 419593, 12 pages.[41] T. Wang, Z. Hu, F. Liao and W. Ma, Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Math. Compt. Simul., 89 (2013), 13–22.[42] D. Li, W. Ma and Z. Jiang, An epidemic model for Tick-Borne disease with two delays, J. Appl. Math., Volume 2013, Article ID 419593, 12 pages.[43] Z. Hu, J. Zhang, H. Wang, W. Ma and F. Liao, Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Appl. Math. Modelling, 38 (2014), 524–534.[44] S. Guo and W. Ma, Complete characterizations of the gamma function, Appl. Math. Comput., 244 (2014), 912–916.[45] Z. Hu, W. Pang, F. Liao and W. Ma, Analysis of a CD4+ T cell viral infection model with a class of saturated infection rate, Discrete Contin. Dyn. Syst.-B, 19(2014), 735-745.[46] S. Guo, W. Ma and B. G. Sampath Aruna Pradeep, Necessary and sufficient conditions for oscillation of neutral delay differential equations, Elect. J. Differ. Equations, 2014 (2014), No. 138, 1-12.[47] Q. Dong and W. Ma, Qualitative analysis of a chemostat model with inhibitory exponential substrate uptake and a time delay, Int. J. Biomath., 7(2014), 1450045 (16 pages).[48] C. Fu and W. Ma, Partial stability of some guidance dynamic systems with delayed line-of-sight angular rate, Int. J. Control, Auto., Syst., 12(2014), 1234-1244.[49] Z. Jiang, W. Ma and D. Li, Dynamical behavior of a delay differential equation system on toxin producing phytoplankton and zooplankton interaction, Japan J. Indust. Appl. Math., 31( 2014), 583-609.[50] B. G. Sampath Aruna Pradeep and W. Ma, Stability properties of a delayed HIV dynamics model with Beddington - Deangelis functional response and absorption effect, Dyn. Contin. Discrete Impul. Syst., Series A: Math. Anal., 21 (2014), 421-434.[51] Z. Jiang and W. Ma, Permanence of a delayed SIR epidemic model with general nonlinear incidence rate, Math. Methods Appl. Sci., (38)2015, 505–516.[52] J. Dong and W. Ma, Sufficient conditions for global attractivity of a class of neutral Hopfield-type neural networks, Neurocomputing, 153(2015), 89-95.[53] B. G. Sampath Aruna Pradeep and W. Ma, Global stability of a delayed Mosquito- transmitted disease model with stage structure, Elect. J. Differ. Equations, 2015 (2015), No. 10, 1-19.[54] Y. Liu, W. Ma, Magdi S. Mahmoud and S. M. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties, Appl. Math. Modelling, 39(2015), 3164-3174.[55] T. Zhang, W. Ma, X. Meng and T. Zhang, Periodic solution of a prey–predator model with nonlinear state feedback control, Appl. Math. Comput., 266 (2015), 95–107.[56] B. G. Sampath Aruna Pradeep and W. Ma, Global stability analysis for vector transmission disease dynamic model with non-linear incidence and two time delays. J. Interdisciplinary Math. 18 (2015), No. 4, 395–415.[57] Z. Jiang and W. Ma, Delayed feedback control and bifurcation analysis in a chaotic Chemostat system, Int. J. Bifurcat. Chaos, 25(2015), No.6, 1550087 (13 pages).[58] F. Li, W. Ma, Z. Jiang and D. Li,Stability and Hopf bifurcation in a delayed HIV infection model with general incidence rate and immune impairment,Comput. Math. Methods Medicine,2105(2015), ID 206205, 14 pages.[59] T. Zhang, W. Ma and X. Meng, Dynamical analysis of a continuous-culture and harvest chemostat model with impulsive effect, J. Biol. Syst., 23 (2015), 555–575.[60] B. G. Sampath Aruna Pradeep, W. Ma and S. Guo, Stability properties of a delayed HIV model with nonlinear functional response and absorption effect, J. Natl. Sci. Found. Sri Lanka, 43(2015), No.3, 235-245.[61] Z. Hu, H. Wang, F. Liao and W. Ma, Stability analysis of a computer virus model in latent period, Chaos Solitons and Fractals, 75(2015), 20-28.出版译著:时滞微分方程: 泛函微分方程引论(日), 内藤敏机, 原惟行, 日野义之, 宫崎伦子著, 马万彪,陆征一 译, 科学出版社, 北京, 2013.中国数学会生物数学专业委员会 副理事长兼任秘书长生物数学学报(科学出版社出版)常务编委Int.J.Biomath.(World Scientific,SCIE) 编委Abstract Appl. Anal.(India, SCIE) 编委美国[Math. Rev.]评论员 相关热点