张瑞丽
近期热点
资料介绍
个人简历
教育背景 2009.09-2014.07, 中国科学院数学与系统科学研究院,计算数学所,硕博连读 2005.09-2009.07,首都师范大学,数学科学学院,本科 工作经历 2019.01-至今,北京交通大学,副教授 2017. 05-2018.12, 北京交通大学, 讲师 2014.09-2017.05, 中国科学技术大学,博士后研究领域
计算理论与信息处理 微分方程理论与应用近期论文
[21] R. Zhang, J. Liu, H. Qin, Y. Tang, Energy-preserving algorithm for gyrocenter dynamics of charged particles, Numerical Algorithm, 2019: 1-10.[20] H. Qin, R. Zhang, A.S. Glasser, J. Xiao, Kelvin-Helmholtz instability is the result of parity-time symmetry breaking, Phys. Plasma, 2019, 26: 032102.[19] R. Zhang, Y. Wang, Y. He, J. Xiao, J. Liu, H. Qin, Y.Tang, Explicit symplectic algorithms based on generating function for relativistic charged particle dynamics in time-dependent electromagnetic field, Phys. Plasma, 2018, 25: 022117.[18] J. Xiao, H. Qin*, J. Liu, R. Zhang, Local energy conservation law for spatially-discretized Hamiltonian Vlasov-Maxwell system, Phys. Plasma, 2017, 24: 062112.[17] X. Tu, B. Zhu, Y. Tang, H. Qin, J. Liu* and R. Zhang, A family of new explicit, revertible, volume-preserving numerical schemes for the system of Lorentz force, Phys. Plasma, 2016, 23: 122514.[16] J. Xiao, H. Qin*, P. Morrison, J. Liu, Z. Yu, R. Zhang, Y. He, Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems, Phys. Plasma, 2016, 23: 112107.[15] B. Zhu, Z. Hu, Y. Tang*, R. Zhang, Symmetric and symplectic methods for gyrocenter dynamics in time-independent magnetic fields, International Journal of Modeling, Simulation, and Scientific Computing, 2016(7), 1650008[14] R. Zhang, H. Qin, Y. Tang, J. Liu, Y. He and J. Xiao, Explicit algorithms based on generating functions for charged particle dynamics, Physical Review E 94, 013205, (2016).[13] R. Zhang, H. Qin, R. C. Davidson, J. Liu, and J. Xiao, On the structure of the two-stream instability–complex G-Hamiltonian structure and Krein collisions between positive- and negativeaction modes, Phys. Plasma 23, 072111, (2016).[12] R. Zhang, J. Liu, H. Qin, Y. Tang, Y. He and Y. Wang, Application of Lie algebra in constructing volume-preserving algorithms for charged particles dynamics, Communications in Computational Physics, 19 (2016) 1397-1408.[11] R. Zhang, Y. Tang, B. Zhu, X. Tu and Y. Zhao, Convergence analysis of the formal energies of symplectic methods for Hamiltonian systems, SCIENCE CHINA Mathematics, 59 (2016) 379-396.[10] Y. He, Y. Sun, R. Zhang, Y. Wang, J. Liu and H. Qin, High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields, Phys. Plasma 23, 092109 (2016).[9] B. Zhu, R. Zhang, Y. Tang, X. Tu and Y. Zhao, Splitting K-symplectic methods for non-canonical separable Hamiltonian problems, Journal of Computational Physics 322, 387-399, (2016).[8] Y. He, H. Qin, Y. Sun, J. Xiao, R. Zhang and J. Liu, Hamiltonian time integrators for Vlasov-Maxwell equations, Phys. Plasmas 22(12), 124503 (2015).[7] J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang and Y. Sun, Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems, Phys. Plasmas 22, 112504 (2015).[6] H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, J. W. Burby, L. Ellison and Y. Zhou, Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell system, Nuclear Fusion 56(1), 014001, (2015).[5] H. Qin, Y. He, R. Zhang, J. Liu, J. Xiao and Y. Wang, Comment on “Hamiltonian splitting for the Vlasov-Maxwell equations”, Journal of Computational Physics 297, 721-723, (2015).[4] R. Zhang, J. Liu, H. Qin, Y. Wang, Y. He and Y. Sun, Volume-preserving algorithm for secular relativistic dynamics of charged particles, Phys. Plasmas 22, 044501 (2015). [3] R. Zhang, J. Liu, Y. Tang, H. Qin, J. Xiao and B. Zhu, Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields, Phys. Plasmas 21, 032504 (2014).[2] H. Fang, G. lin and R. Zhang, The first-order symplectic Euler method for simulation of GPR wave propagation in pavement structure, IEEE Transaction on geosciences and remote sensing, Vol. 51, No.1, (2013) 93-98.[1] R. Zhang, J. Huang, Y. Tang and L. Vázquez, Revertible and Symplectic Methods for the Ablowitz-Ladik Discrete Nonlinear Schrodinger Equation, GCMS’11 Proceeding of the 2011 Grand Challenges on Modeling and Simulation Conference, 297-306, (2011). 相关热点