热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
王启宁
2023-05-05 16:30
  • 王启宁
  • 王启宁 - 研究员 博士生导师-北京大学-工学院-个人资料

近期热点

资料介绍

个人简历


教育经历:
2009年,北京大学,力学系,获理学博士学位
2004年,中国地质大学(北京),计算机科学与技术系,获工学学士学位
主要科研工作经历:
2020年1月至今,北京大学 工学院 副院长
2018年6月至今,北京大学 康复工程研究中心 主任
2016年10月至今,北京大学 工程科学与新兴技术高精尖创新中心 Co-PI
2016年2月至今,北京大学 工学院 研究员 (with tenure)
2015年1月至今,北京大学 机器人研究中心 副主任
2012年8月-2016年1月,北京大学 工学院 副研究员 (tenure-track)
2011年1月至今,北京市智能康复工程技术研究中心(省部级工程中心) 主任
2009年7月-2012年7月,北京大学 工学院 助理研究员 (tenure-track)

主要荣誉:
科技部中青年科技创新领军人才(2019)、国家自然科学基金优秀青年基金(2019)、国家“万人计划”青年拔尖人才(2015)、熊有伦智湖优秀青年学者奖(2018)、北京市优秀青年人才(2016)、北京市“高创计划”青年拔尖人才(2015)、北京市科技新星(2014)、北京大学博雅青年学者(2017)、北京大学黄廷方/信和青年杰出学者奖(2016)、北京大学埃克森美孚奖教金(2012)、北京大学方正奖教金(2012)、北京大学优秀毕业生(2009)、北京大学研究生“学术十杰”(2009)、中国大学生十大年度人物(2008)、第五届中国青少年科技创新奖(2008)、第六届北京大学“五四”奖章(2008)、北京大学埃克森美孚奖学金(2008)、北京大学摩根士丹利奖学金(2007)、北京大学科研创新团队奖(2007)、北京大学个人学术创新奖(2006、2007)
Selected Publications: (* for corresponding author)
Books:
[3] Q. Wang*, N. Vitiello, Y. Hasegawa, Wearable Robotics for Motion Assistance and Rehabilitation, Springer, 2018. (accepted)
[2] Q. Wang*, J. Zhu, Y. Huang, K. Yuan, L. Wang, Segmented foot with compliant actuators and its applications to lower-limb prostheses and exoskeletons, Smart actuation and sensing systems - Recent advances and future challenges, Edited by G. Berselli, R. Vertechy, G. Vassura, InTech, 2012.
[Book Chapter]
[1] Q. Wang*, C. Rong, G. Xie, L. Wang, Collaborative localization and gait optimization of sharPKUngfu team, Robotic Soccer, Edited by Pedro U. Lima, Vienna, I-Tech Education and Publishing, 2007. [Book Chapter]
Patents:
[31] 穿戴式动力膝关节康复装置,国家发明专利,专利授权号:ZL201710020830.4,授权日期:2020.2.28
[30] 一种可调整腿部姿态的儿童脑瘫踝关节康复装置,国家发明专利,专利授权号:ZL201710047419.6,授权日期:2019.8.2
[29] Damping control method for lower-limb prostheses, United States Patent No.: US 10335293 B2, Date of Patent: Jul. 2, 2019
[28] 一种可调整腿部姿态的踝关节康复装置,国家发明专利,专利授权号:ZL201710047420.9,授权日期:2019.4.9
[27] 一种基于连续可变串联柔性驱动的穿戴式动力膝关节,国家发明专利,专利授权号:ZL201710020683.0,授权日期:2019.1.1
[26] Non-contact capacitive sensing system for robotic lower-limb prosthesis, United States Patent, Patent No.: US 10111763 B2, Date of Patent: Oct . 30, 2018
[25] 一种基于多传感器信息融合的步态分类方法,国家发明专利,专利授权号:ZL201410257800.1,授权日期:2017.7.7
[24] 一种无人自主飞艇及其飞行控制系统的建立方法,国家发明专利,专利授权号:ZL201410333398.0,授权日期:2016.8.24
[23] 一种电机驱动小腿假肢的阻尼控制方法,国家发明专利,专利授权号:ZL201410479753.5,授权日期:2016.1.13
[22] 多自由度的踝关节动力外骨骼,国家发明专利,专利授权号:ZL201410208291.3,授权日期:2015.12.30
[21] 一种用于智能假肢的非接触式电容传感系统,国家发明专利,专利授权号:ZL201410125782.1,授权日期:2015.8.19
[20] 二自由度限位异向变柔性仿生踝关节,国家发明专利,专利授权号:ZL201310397537.1,授权日期:2015.8.12
[19] 一种基于整体脚板的离散柔性趾关节,国家发明专利,专利授权号:ZL201210410861.8,授权日期:2015.1.7
[18] 一种基于整体脚板的连续柔性趾关节,国家发明专利,专利授权号:ZL201210410366.7,授权日期:2014.12.10
[17] 一种直驱踝关节,国家发明专利,专利授权号:ZL201210409845.7,授权日期:2014.12.3
[16] 一种下肢痉挛智能康复装置,国家发明专利,专利授权号:ZL201210573043.X,授权日期:2014.11.19
[15] 一种磁流变制动踝关节,国家发明专利,专利授权号:ZL201210408696.1,授权日期:2014.11.19
[14] 一种用于假肢控制的穿戴式脚底压力采集装置,国家发明专利,专利授权号:ZL201210151043.0,授权日期:2014.8.20
[13] 一种柔性可控的关节驱动器,国家发明专利,专利授权号:ZL201210562886.X,授权日期:2014.8.20
[12] 一种膝关节柔性辅助康复装置,国家发明专利,专利授权号:ZL201310032825.7,授权日期:2014.8.6
[11] 一种实时识别踝关节的肌电信号采集设备及识别方法,国家发明专利,专利授权号:ZL201210151067.6,授权日期:2014.3.12
[10] 一种用于人体运动模态识别的电容传感系统,国家发明专利,专利授权号:ZL201210151050.0,授权日期:2014.1.29
[9] 一种基于足底压力的步态分析方法,国家发明专利,专利授权号:ZL201210150499.5,授权日期:2013.9.4
[8] 一种基于动力膝下假肢的步态识别方法,国家发明专利,专利授权号:ZL201010267534.2,授权日期:2013.4.24
[7] 含柔性动力踝关节和脚趾关节的动力膝下假肢,国家发明专利,专利授权号:ZL201010261842.4,授权日期:2012.10.3
[6] 主被动运动相结合的动力膝关节,国家发明专利,专利授权号:ZL201010267558.8,授权日期:2012.8.23
[5] 一种基于动力膝下假肢的阻抗控制方法,国家发明专利,专利授权号:ZL201010281463.1,授权日期:2012.3.21
[4] 一种基于被动运动方式的双足类人机器人,国家发明专利,专利授权号:ZL200810225507.1,授权日期:2010.6.9
[3] 一种行走机器人多电机控制系统,国家发明专利,专利授权号:ZL200810114507.4,授权日期:2010.4.7
[2] 一种主被动运动结合的弹性机械腿,国家发明专利,专利授权号:ZL200710120157.8,授权日期:2009.6.10
[1] 在复杂环境下智能机器人自主定位的方法,国家发明专利,专利授权号:ZL200610056937.6,授权日期:2009.2.11

研究领域


智能机器人、智能肢体、康复工程"研究领域:
智能机器人、智能肢体、康复工程"

近期论文


Journal Publications:
[64] Q. Wang*, Z. Zhou, Z. Zhang, Y. Lou, Y. Zhou, S. Zhang, W. Chen, C. Mao, Z. Wang, W. Lou, J. Mai, An underwater lower-extremity soft exoskeleton for breaststroke assistance, IEEE Transactions on Medical Robotics and Bionics, 2020. (online first)
[63] Y. Feng, J. Mai, S. Agrawal, Q. Wang*, Energy regeneration from electromagnetic induction by human dynamics for lower-extremity robotic prostheses, IEEE Transactions on Robotics, 2020. (online first)
[62] X. Liu, Q. Wang*, Real-time locomotion mode recognition and assistive torque control for unilateral knee exoskeleton on different terrains, IEEE/ASME Transactions on Mechatronics, 2020. (online first)
[61] D. Xu, Q. Wang*, On-board training strategy for IMU-based real-time locomotion recognition of transtibial amputees with robotic prostheses, Frontiers in Neurorobotics, 2020. (accepted)
[60] Y. Feng, Q. Wang*, Adjusting ankle angle measurement based on a strain gauge bridge for powered transtibial prosthesis, ASME Journal of Dynamic Systems, Measurement and Control, vol. 142, no. 7, pp. 1-10, 2020.
[59] P. Sun, D. Xu, J. Mai, Z. Zhou, S. Agrawal, Q. Wang*, Inertial sensors based torso motion mode recognition for an active postural support brace, Advanced Robotics, vol. 34, no. 1, pp. 57-67, 2020.
[58] C. Gong, D. Xu, Z. Zhou, N. Vitiello, Q. Wang*, BPNN-based real-time locomotion mode recognition for an active pelvis orthosis with different assistive strategies, International Journal of Humanoid Robotics, vol. 17, no. 1, pp. 1-18, 2020.
[57] E. Zheng, Q. Wang*, H. Qiao, Locomotion mode recognition with robotic transtibial prosthesis in inter-session and inter-day applications, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 9, pp. 1836-1845, 2019.
[56] D. Xu, X. Liu, Q. Wang*, Knee exoskeleton assistive torque control based on real-time gait event detection, IEEE Transactions on Medical Robotics and Bionics, vol. 1, no. 3, pp. 158-168, 2019.
[55] S. Crea, S. Manca, A. Parri, E. Zheng, J. Mai, R. M. Lova, N. Vitiello, Q. Wang*, Controlling a robotic hip exoskeleton with noncontact capacitive sensors, IEEE/ASME Transactions on Mechatronics, vol. 24, no. 5, pp. 2227-2235, 2019.
[54] X. Liu, Z. Zhou, J. Mai, Q. Wang*, Real-time mode recognition based assistive torque control of bionic knee exoskeleton for sit-to-stand and stand-to-sit transitions, Robotics and Autonomous Systems, vol. 119, pp. 209-220, 2019.
[53] Y. Feng, Q. Wang*, Using one strain gauge bridge to detect gait events for a robotic prosthesis, Robotica, vol. 37, no. 11, pp. 1987-1997, 2019.
[52] C. Ophaswongse, R. C. Murray, V. Santamaria, Q. Wang, S. K. Agrawal*, Human evaluation of wheelchair robot for active postural support (WRAPS), Robotica, vol. 37, no. 12, pp. 2131-2146, 2019. (Cover Story)
[51] Y. Lou, R. Wang, J. Mai, N. Wang, Q. Wang*, IMU-based gait phase recognition for stroke survivors, Robotica, vol. 37, no. 12, pp. 2195-2208, 2019.
[50] Y. Feng, W. Chen, Q. Wang*, A strain gauge based locomotion mode recognition method using convolutional neural network, Advanced Robotics, vol. 33, no. 5, pp. 245-263, 2019.
[49] L. Huang, J. Mai, Q. Zhu, Z. Guo, S. Qin, P. Yang, X. Li, Y. Shi, X. Wang, Q. Wang, Na Li, C. Xie*, H. Liu*, Reversible rearrangement of magnetic nanoparticles in solution studied using time-resolved SAXS method, Journal of Synchrotron Radiation, vol. 26, pp. 1294-1301, 2019.
[48] D. Xu, Y. Feng, J. Mai, Q. Wang*, Real-time on-board recognition of continuous locomotion modes for amputees with robotic transtibial prostheses, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 10, pp. 2015-2025, 2018.
[47] E. Zheng, J. Mai, Y. Liu, Q. Wang*, Forearm motion recognition with noncontact capacitive sensing, Frontiers in Neurorobotics, vol. 12, no. 47, pp. 1-13, 2018.
[46] Y. Feng, Q. Wang*, Combining push-off power and nonlinear damping behaviors for a lightweight motor-driven transtibial prosthesis, IEEE/ASME Transactions on Mechatronics, vol. 22, no. 6, pp. 2512-2523, 2017.
[45] A. Parri, K. Yuan, D. Marconi, T. Yan, S. Crea, M. Munih, R. M. Lova, N. Vitiello, Q. Wang*, Real-time hybrid locomotion mode recognition for lower limb wearable robots, IEEE/ASME Transactions on Mechatronics, vol. 22, no. 6, pp. 2480-2491, 2017.
[44] E. Zheng, S. Manca, T. Yan, A. Parri, N. Vitiello, Q. Wang*, Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators, IEEE Transactions on Biomedical Engineering, vol. 64, no. 10, pp. 2419-2430, 2017.
[43] G. Kong, Z. Zhou, Q. Wang, K. Kording, K. Wei*, Credit assignment between body and object probed by an object transportation task, Scientific Reports, 7:13415, 2017.
[42] Z. Guan, T. Cai, Z. Liu, Y. Dou, X. Hu, P. Zhang, X. Sun, H. Li, Y. Kuang, Q. Zhai, H. Ruan, X. Li, Z. Li, Q. Zhu, J. Mai, Q. Wang, L. Lai, J. Ji, H. Liu, B. Xia, T. Jiang, S. Luo, H. Wang, C. Xie*, Origin of the reflectin gene and hierarchical assembly of its protein, Current Biology, vol. 27, no. 18, pp. 2833-2842, 2017. (Cover Story)
[41] G. Chen, Z. Zhou, N. Wang, Q. Wang*, Range-of-motion measurement with therapist-joined method for robot-assisted ankle stretching, Robotics and Autonomous Systems, vol. 94, pp. 34-42, 2017.
[40] K. Yuan, Q. Wang, L. Wang*, Energy-efficient braking torque control of robotic transtibial prosthesis, IEEE/ASME Transactions on Mechatronics, vol. 22, no. 1, pp. 149-160, 2017.
[39] E. Zheng, Q. Wang*, Noncontact capacitive sensing-based locomotion transition recognition for amputees with robotic transtibial prostheses, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 2, pp. 161-170, 2017.
[38] Y. Huang, Q. Huang, Q. Wang*, Chaos and bifurcation control of torque-stiffness-controlled dynamic bipedal walking, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7, pp. 1229-1240, 2017. (ESI Highly Cited Paper)
[37] Z. Zhou, Y. Sun, N. Wang, F. Gao, K. Wei, Q. Wang*, Robot-assisted rehabilitation of ankle plantar flexors spasticity: A 3-month study with proprioceptive neuromuscular facilitation, Frontiers in Neurorobotics, vol. 10, no. 16, pp. 1-14, 2016.
[36] B. Chen, Y. Feng, Q. Wang*, Combining vibrotactile feedback with volitional myoelectric control for robotic transtibial prostheses, Frontiers in Neurorobotics, vol. 10, no. 8, pp. 1-14, 2016.
[35] G. Chen, Z. Zhou, B. Vanderborght, N. Wang, Q. Wang*, Proxy-based sliding mode control of robotic ankle-foot system for post-stroke rehabilitation, Advanced Robotics, vol. 30, no. 15, pp. 992-1003, 2016.
[34] Y. Huang, Q. Wang*, Torque-stiffness-controlled dynamic walking: Analysis of the behaviors of bipeds with both adaptable joint torque and joint stiffness, IEEE Robotics and Automation Magazine, vol. 23, no. 1, pp. 71-82, 2016.
[33] S. Sun, Y. Huang, Q. Wang*, Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking, Journal of Theoretical Biology, vol. 388, pp. 108-118, 2016.
[32] Q. Wang*, K. Yuan, J. Zhu, L. Wang, Walk the walk: A lightweight active transtibial prosthesis, IEEE Robotics and Automation Magazine, vol. 22, no. 4, pp. 80-89, 2015.
[31] B. Chen, X. Wang, Y. Huang, K. Wei, Q. Wang*, A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution, Mechatronics, vol. 32, pp. 12-21, 2015.
[30] Z. Zhou, Y. Zhou, N. Wang, F. Gao, K. Wei, Q. Wang*, A proprioceptive neuromuscular facilitation integrated robotic ankle-foot system for post stroke rehabilitation, Robotics and Autonomous Systems, vol. 73, pp. 111-122, 2015.
[29] B. Chen, Q. Wang*, L. Wang, Adaptive slope walking with a robotic transtibial prosthesis based on volitional EMG control, IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2146-2157, 2015.
[28] Y. Huang, Q. Wang*, Disturbance rejection of central pattern generator based torque-stiffness-controlled dynamic walking, Neurocomputing, vol. 170, pp. 141-151, 2015.
[27] K. Yuan, Q. Wang*, L. Wang, Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees, IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 618-630, 2015.
[26] B. Chen, E. Zheng, Q. Wang*, L. Wang, A new strategy for parameter optimization to improve phase-dependent locomotion mode recognition, Neurocomputing, vol. 149, pp. 585-593, 2015.
[25] E. Zheng, L. Wang, K. Wei, Q. Wang*, A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees, IEEE Transactions on Biomedical Engineering, vol. 61, no. 12, pp. 2911-2920, 2014.
[24] Y. Huang, B. Vanderborght, R. Van Ham, Q. Wang*, Torque-stiffness-controlled dynamic walking with central pattern generators, Biological Cybernetics, vol. 108, pp. 803-823, 2014.
[23] J. Zhu, Q. Wang*, L. Wang*, Effects of toe stiffness on ankle kinetics in a robotic transtibial prosthesis during level-ground walking, Mechatronics, vol. 24, pp. 1254-1261, 2014.
[22] K. Wei*, J. Glaser, L. Deng, C. Thompson, I. Stevenson, Q. Wang, G. Hornby, C. J. Heckman, K. Kording, Serotonin affects movement gain control in the spinal cord, Journal of Neuroscience, vol. 34, no. 38, pp. 12690-12700, 2014.
[21] P. Cherelle*, G. Mathijssen, Q. Wang, B. Vanderborght, D. Lefeber, Advances in propulsive bionic feet and their actuation principles, Advances in Mechanical Engineering, pp. 1-21, 2014.
[20] B. Chen, E. Zheng, Q. Wang*, A locomotion intent prediction system based on multi-sensor fusion, Sensors, vol. 14, no. 7, pp. 12349-12369, 2014.
[19] J. Zhu, Q. Wang*, L. Wang, On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints, IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4797-4807, 2014.
[18] E. Zheng, B. Chen, X. Wang, Y. Huang, Q. Wang*, On the design of a wearable multi-sensor system for recognizing motion modes and sit-to-stand transition, International Journal of Advanced Robotic Systems, vol. 11, pp. 1-8, 2014.
[17] K. Wei*, X. Yan, G. Kong, C. Yin, F. Zhang, Q. Wang, K. Kording, Computer use changes generalization of movement learning, Current Biology, vol. 24, pp. 1-4, 2014.
[16] F. Tao*, Y. Laili, Y. Liu, Y. Feng, Q. Wang, L. Zhang, L. Xu, Concept, principle and application of dynamic configuration for intelligent algorithms, IEEE Systems Journal, vol. 8, no. 1, pp. 28-42, 2014.
[15] E. Zheng, B. Chen, K. Wei, Q. Wang*, Lower limb wearable capacitive sensing and its applications to recognizing human gaits, Sensors, vol. 13, no. 10, pp. 13334-13355, 2013.
[14] B. Chen, E. Zheng, X. Fan, T. Liang, Q. Wang*, K. Wei, L. Wang, Locomotion mode classification using a wearable capacitive sensing system, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 5, pp. 744-755, 2013.
[13] Y. Huang, B. Vanderborght, R. Van Ham, Q. Wang*, M. Van Damme, G. Xie, D. Lefeber, Step length and velocity control of a dynamic bipedal walking robot with adaptable compliant joints, IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 598-611, 2013.
[12] X. Yan, Q. Wang, Z. Lu, I. Stevenson, K. Kording, K. Wei*, Generalization of unconstrained reaching with hand weight changes, Journal of Neurophysiology, vol. 109, no. 1, pp. 137-146, 2013.
[11] Q. Ding, I. H. Stevenson, N. Wang, W. Li, Y. Sun, Q. Wang, K. Kording, K. Wei*, Motion games improve balance control in stroke survivors: a preliminary study based on the principle of constraint-induced movement therapy, Displays, vol. 34, no. 2, pp. 125-131, 2013.
[10] Y. Huang, Q. Wang*, Gait selection and transition of passivity-based bipeds with adaptable ankle stiffness, International Journal of Advanced Robotic Systems, vol. 9, pp. 99-110, 2012.
[9] Y. Huang, Q. Wang*, B. Chen, G. Xie, L. Wang, Modeling and gait selection of passivity-based seven-link bipeds with dynamic series of walking phases, Robotica, vol. 30, pp. 39-51, 2012.
[8] Y. Huang, Q. Wang*, Y. Gao, G. Xie, Modeling and analysis of passive dynamic bipedal walking with segmented feet and compliant joints, Acta Mechanica Sinica, vol. 28, no. 5, pp. 1457-1465, 2012.
[7] J. Wen, Q. Ding, Z. Yu, W. Sun, Q. Wang, K. Wei*, Adaptive changes of foot pressure in hallux valgus patients, Gait and Posture, vol. 36, no. 3, pp. 344-349, 2012.
[6] Q. Wang*, Y. Huang, J. Zhu, B. Chen, L. Wang, Dynamic walking on uneven terrains with passivity-based bipedal robots, Lecture Notes in Electrical Engineering, vol. 85, pp. 187-199, Springer-Verlag, 2011.
[5] Q. Wang*, Y. Huang, J. Zhu, L. Wang, D. Lv, Effects of foot shape on energetic efficiency and dynamic stability of passive dynamic biped with upper body, International Journal of Humanoid Robotics, vol. 7, no. 2, pp. 295-313, 2010.
[4] Q. Wang*, Y. Huang, L. Wang, Passive dynamic walking with flat feet and ankle compliance, Robotica, vol. 28, pp. 413-425, 2010.
[3] Q. Wang*, H. Li, F. Huang, G. Xie, L. Wang, Collaborative localization based formation control of multiple quadruped robots, Lecture Notes in Artificial Intelligence, vol. 5399, pp. 649-659, Springer-Verlag, 2009.
[2] C. Rong, Q. Wang*, Y. Huang, G. Xie, L. Wang, Autonomous evolution of high-speed quadruped gaits using particle swarm optimization, Lecture Notes in Artificial Intelligence, vol. 5399, pp. 259–270, Springer-Verlag, 2009.
[1] Q. Wang*, Y. Huang, G. Xie, L. Wang, Let robots play soccer under more natural conditions: experience-based collaborative localization in four-legged league, Lecture Notes in Artificial Intelligence, vol. 5001, pp. 353-360, Springer-Verlag, 2008.
学术兼职:
担任IEEE机器人与自动化协会穿戴式机器人技术委员会顾问、IEEE Medal for Environmental & Safety Technologies评奖委员会委员;担任中国机械工程学会机器人分会委员、中国残疾人康复协会康复工程与辅助技术专业委员会副主任委员、中国生物医学工程学会医用机器人工程与临床应用分会委员会委员、中国老年医学学会康复分会委员会常务委员、北京康复医学会康复工程专业委员会副主任委员。
IEEE Senior Member (RAS), ASME Member, Intelligent Autonomous Systems (IAS) Society Member, RESNA Member.
Editorial Board: IEEE/ASME Transactions on Mechatronics (Technical Editor, 2017-); IEEE Robotics and Automation Magazine (Associate Editor, 2016-2018); IEEE Transactions on Medical Robotics and Bionics (Associate Editor, 2018-); Robotica (Associate Editor, 2018-); Wearable Technologies (Associated Editor, 2019-).
Guest Editor: Robotica (Special Issue on Wearable Robotics: Dynamics, Control and Applications); Advanced Robotics (Special Issue on Cyborg and Bionic Systems); Applied Bionics and Biomechanics (Special Issue on Advances in Rehabilitation and Assistive Robots).
Reviewer: IEEE Transactions on Robotics, IEEE Robotics and Automation Magazine, IEEE Transactions on Control Systems Technology, IEEE/ASME Transactions on Mechatronics, IEEE Transactions on Neural Systems and Rehabilitation Engineering, IEEE Transactions on Medical Robotics and Bionics, IEEE Transactions on Automation Science and Engineering, IEEE Transactions on Industrial Electronics, IEEE Transactions on Biomedical Engineering, IEEE Transactions on Systems, Man, and Cybernetics: Systems, IEEE Transactions on Human-Machine Systems, IEEE Robotics and Automation Letters, Autonomous Robots, Robotics and Autonomous Systems, Soft Robotics, Mechatronics, Neurocomputing, Journal of Experimental Biology, Medical Engineering & Physics, Nonlinear Dynamics, Journal of Biomechanical Engineering, Sensors, Robotica, Frontiers in Neurorobotics, Frontiers in Neurology, ASME Journal of Mechanisms and Robotics, ASME Journal of Vibration and Acoustics, Journal of Intelligent and Robotic Systems, International Journal of Humanoid Robotics, International Journal of Advanced Robotic Systems.

相关热点

扫码添加好友