宋柏
近期热点
资料介绍
个人简历
教育经历:2010/08–2015/12 博士 University of Michigan, Ann Arbor 2007/09–2010/07 硕士 清华大学 2003/08–2007/07 学士 清华大学 工作经历:2019/01 – 至今 特聘研究员 北京大学工学院能源与资源工程系2019/01 – 至今 Co-PI 北京市工程科学与新兴技术高精尖创新中心2016/07 – 2018/12 博后 Massachusetts Institute of Technology 2016/02 – 2016/07 博后 University of Michigan, Ann Arbor 在北京大学开放热学实验室,我们探讨和分享任何有趣的冷热问题。这些问题广泛存在于能源与环境、电子和光电子、先进制造与机器人、生物医学、高温超导、量子材料与计算、类脑计算,以及太空探索等前沿领域。人们在极小时空尺度观察、模拟、设计、测量并操作物质的能力不断进化,为理解、控制和利用各种热现象和载热子提供了空前机遇。我们基于纳米技术和飞秒激光,结合理论分析与数值模拟,理解并调控关键材料、器件和系统中,热量在不同时空尺度和维度的产生、输运、转化和储存。近期将聚焦热辐射、固体导热和生物热学。探索机理和拓展极限是核心主题;比如热的相干、水力和量子属性,热流的智能调控,以及传热、储热、泵热和热能转化的极限效率。光子、声子、电子、离子和磁振子等各种(准)粒子主导的热输运,低维、纳米、相变、准晶、拓扑和软材料都是兴趣所在。主要实验技术包括自制的真空光机电纳米系统,微纳皮瓦量热计和扫描探针,以及多种桌面超快激光泵浦探测平台;同时借助超高真空扫描探针显微镜和X射线自由电子激光等商业设备和共享资源。计算方法包括电磁模拟、第一性原理和机器学习等。立足基础研究,我们也致力于发展工程技术以应对现实挑战,例如基于固态热电转换的可靠高效清洁能源,下一代电子和光电子器件及其有效散热,航天器和数据中心的高效热管理,热辅助高密度信息存储,激光和增材等先进制造技术,以及基于热现象的精密探测、传感以及驱动技术。诚挚欢迎有热情又能坐冷板凳的本科生、研究生、博士后和研究助理加入我们。 研究成果:主导或参与项目包括纳米尺度近场热辐射的基础理论与实验研究,半导体砷化硼晶体的生长及不寻常高导热率的表征与分析,硼同位素富集的立方氮化硼晶体的超高导热率及同位素效应, 石墨中高温声子水力输运及第二声的预测和观测,量子点超晶格结构中声子局域化输运,以及媲美金属的导热塑料薄膜等。四篇论文发表于Nature和Science,五篇在Nature Nanotechnology等子刊发表。研究领域
我们探讨和分享任何有趣的冷热问题。这些问题广泛存在于能源与环境、电子和光电子、先进制造与机器人、生物医学、高温超导、量子材料与计算、类脑计算,以及太空探索等前沿领域。人们在极小时空尺度观察、模拟、设计、测量并操作物质的能力不断进化,为理解、控制和利用各种热现象和载热子提供了空前机遇。我们基于纳米技术和飞秒激光,结合理论分析与数值模拟,理解并调控关键材料、器件和系统中,热量在不同时空尺度和维度的产生、输运、转化和储存。近期将聚焦热辐射、固体导热和生物热学。探索机理和拓展极限是核心主题;比如热的相干、水力和量子属性,热流的智能调控,以及传热、储热、泵热和热能转化的极限效率。光子、声子、电子、离子和磁振子等各种(准)粒子主导的热输运,低维、纳米、相变、准晶、拓扑和软材料都是兴趣所在。主要实验技术包括自制的真空光机电纳米系统,微纳皮瓦量热计和扫描探针,以及多种桌面超快激光泵浦探测平台;同时借助超高真空扫描探针显微镜和X射线自由电子激光等商业设备和共享资源。计算方法包括电磁模拟、第一性原理和机器学习等。立足基础研究,我们也致力于发展工程技术以应对现实挑战,例如基于固态热电转换的可靠高效清洁能源,下一代电子和光电子器件及其有效散热,航天器和数据中心的高效热管理,热辅助高密度信息存储,激光和增材等先进制造技术,以及基于热现象的精密探测、传感以及驱动技术。近期论文
发表论文:*Equal contribution, †Corresponding author[16] K. Chen*, B. Song*†, N. K. Ravichandran*, Q. Zheng, X. Chen, H. Lee, H. Sun, S. Li, G. A. G. U. Gamage, F. Tian, Z. Ding, Q. Song, A. Rai, H. Wu, P. Koirala, A. J. Schmidt, K. Watanabe, B. Lv, Z. Ren, L. Shi, D. G. Cahill, T. Taniguchi, D. Broido†, Gang Chen†, Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride, Science, 2020.[15] Y. Xu, D. Kraemer, B. Song, Z. Jiang, J. Zhou, J. Loomis, J. Wang, M. Li, H. Ghasemi, X. Huang, X. Li and G. Chen, Nanostructured polymer films with metal-like thermal conductivity, Nature Communications, 2019. (Highlighted by MIT News)[14] S. Huberman, R. A. Duncan, K. Chen, B. Song, V. Chiloyan, Z. Ding, A. A. Maznev, G. Chen, K. A. Nelson, Observation of second sound in graphite at temperatures above 100 K, Science, 2019. (Highlighted by Science Perspective)[13] F. Tian*, B. Song*, X. Chen*, N. K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T. H. Liu, M. Goni, Z. Ding, J. Sun, G. A. G. U. Gamage, H. Sun, H. Ziyaee, S. Huyan, L. Deng, J. Zhou, A. J. Schmidt, S. Chen, C. W. Chu, P. Y. Huang, D. Broido, L. Shi, G. Chen, Z. Ren, Unusual high thermal conductivity in boron arsenide bulk crystals, Science, 361, 2018. (Highlighted by Science Perspective)[12] M. N. Luckyanova, J. Mendoza, H. Lu, B. Song, S. Huang, J. Zhou, M. Li, Y. Dong, H. Zhou, J. Garlow, L. Wu, B. J. Kirby, A. J. Grutter, A. A. Puretzky, Y. Zhu, M. Dresselhaus, A. Gossard and G. Chen, Phonon localization in heat conduction, Science Advances, 4(12), 2018.[11] Y. Xu, X. Wang, J. Zhou, B. Song, Z. Jiang, E. Lee, S. Huberman, K. K. Gleason and G. Chen, Molecular engineered conjugated polymer with high thermal conductivity, Science Advances, 4(3), 2018. (Highlighted by MIT News)[10] T.H. Liu, B. Song, L. Meroueh, Z. Ding, Q. Song, J. Zhou, M. Li, G. Chen, Simultaneously high electron and hole mobilities in cubic boron-V compounds: BP, BAs and BSb, Physical Review B, 98(8), 2018.[9] A. Fiorino, D. Thompson, L. Zhu, B. Song, P. Reddy and E. Meyhofer, Giant Enhancement in radiative heat transfer in sub-30 nm gaps of plane parallel surfaces, Nano Letters, 2018.[8] F. Tian, B. Song, B. Lv, J. Sun, S. Huyan, Q. Wu, J. Mao, Y. Ni, Z. Ding, S. Huberman, T. H. Liu, G. Chen, S. Chen, C. W. Chua, Z. Ren, Seeded growth of boron arsenide single crystals with high thermal conductivity, Applied Physics Letters, 112(3), 2018.[7] Z. Ding, J. Zhou, B. Song, V. Chiloyan, M. Li, T. H. Liu and G. Chen, Phonon hydrodynamic heat conduction and Knudsen minimum in graphite, Nano Letters, 2017.[6] B. Song*, D. Thompson*, A. Fiorino, Y. Ganjeh, P. Reddy and E. Meyhofer, Radiative heat conductances between dielectric and metallic plane-parallel plates with nanoscale gaps, Nature Nanotechnology, 11(6), 2016. (Highlighted by Nature Nanotechnology News and Views)[5] K. Kim*, B. Song*, V. Fernández-Hourtad*, W. Lee, W. Jeong, L. Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. Garcia-Vidal, J. C. Cuevas, E. Meyhofer and P. Reddy, Radiative heat transfer in the extreme near-field, Nature, 528(7582), 2015. (Highlighted by Nature Photonics News and Views)[4] B. Song*, Y. Ganjeh*, S. Sadat*, D. Thompson, A. Fiorino, V. Fernández-Hourtad, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy and E. Meyhofer, Enhancement of near-field radiative heat transfer using polar dielectric thin films, Nature Nanotechnology, 10(3), 2015. (Highlighted by Nature Nanotechnology News and Views)[3] B. Song†, A. Fiorino, E. Meyhofer† and P. Reddy†, Near-field radiative thermal transport: From theory to experiment, AIP Advances, 5(5), 2015. (Invited Review)[2] Y. Ganjeh*, B. Song*, K. Pagadala, S. Sadat, K. Kim, K. Kurabayashi, E. Meyhofer, P. Reddy, A platform to parallelize planar surfaces and control their spatial separation with nanometer resolution, Review of Scientific Instruments, 83(10), 2012.[1] B. Song† and Z. Y. Guo, Robustness in the volume-to-point heat conduction optimization problem, International Journal of Heat and Mass Transfer, 54(21-22), 2011. 相关热点