李毓龙
近期热点
资料介绍
个人简历
Academic History\r2000-2006 Ph.D., Dept. of Neurobiology, Duke University.\r1996-2000 BS, School of life sciences, Peking University.\r\rPositions\r2020.8- Full Professor (tenured), School of Life Sciences, Peking University.\r2012.11- Principal Investigator, PKU-THU Center for Life Sciences. IDG/McGovern Institute For Brain Research.\r2019.8-2020.7 Associate Professor (tenured), School of Life Sciences, Peking University.\r2012.11-2019.7 Assistant Professor, School of Life Sciences, Peking University.\r2006-2012.7 Postdoctoral Fellow, Dept. of Molecular and Cellular Physiology, Stanford University.\r\rProfessional Experience\r2019- Reviewing Editor of Journal of Neurochemistry研究领域
人的大脑由数十亿的神经元组成,后者又通过数万亿的突触组成复杂的神经网络。不同种类的神经元经过或远或近的投射,通过突触与其他神经元进行信息交流,实现感知觉、决策和运动等高级神经功能。\r研究大脑的最大挑战在于脑的高度复杂性。我们实验室集中在神经元通讯的基本结构突触上,从两个层面上开展研究:一是开发前沿的工具,即开发新型成像探针,用于在时间和空间尺度上解析神经系统的复杂功能;二是借助先进的工具探究突触传递的调节机制,特别是在生理及病理条件下对神经递质释放的调节。\r\r 具体而言,对于工具开发,我们集中于:\r1、结合光遗传学和荧光成像,无损伤性的研究神经元之间的电突触连接。电突触的异常可导致耳聋、癫痫、脑部肿瘤和心脏功能异常等疾病。\r2、开发可遗传编码的检测神经递质/调质的荧光探针。神经递质/调质是神经元化学突触传递的关键介导分子,与感知、学习和记忆以及情绪密切相关。\r\r 利用上述荧光探针,我们的功能性和生理性的研究集中于:\r1、结合双光子成像和可遗传编码的荧光探针,使用果蝇和小鼠作为模式生物,研究嗅觉传导或睡眠过程中脑的工作机制。\r2、寻找上述新型化学递质/调质小分子的对应受体,即寻找“孤儿”受体的配体。\r3、结合生物信息学、分析化学、生物化学、生理学和成像学方法,系统地探索和鉴定潜在的新型小分子神经递质。""近期论文
Patton, A. P.*, Morris, E. L., McManus, D., Wang, H., Li, Y., Chin, J. W., & Hastings, M. H.* (2023). Astrocytic control of extra-cellular GABA drives circadian time-keeping in the suprachiasmatic nucleus.. bioRxiv, 2023.2001.2016.523253. [Full Text] [PDF]\r\t\rHatashita, Y., Wu, Z., Fujita, H., Kumamoto, T., Livet, J., Li, Y., Tanifuji, M., & Inoue, T.* (2022). Spontaneous and multifaceted ATP release from astrocytes at the scale of hundreds of synapses. bioRxiv, 2022.2012.2005.519082. [Full Text] [PDF]\r\t\rBasu, A., Yang, J.-H., Yu, A., Glaeser-Khan, S., Feng, J., Krystal, J. H., Li, Y., & Kaye, A. P.* (2022). Prefrontal norepinephrine represents a threat prediction error under uncertainty. bioRxiv, 2022.2010.2013.511463. [Full Text] [PDF]\r\t\rKrok, A. C., Mistry, P., Li, Y., & Tritsch, N. X.* (2022). Intrinsic reward-like dopamine and acetylcholine dynamics in striatum. bioRxiv, 2022.2009.2009.507300. [Full Text] [PDF]\r\t\rGyawali, U., Martin, D. A., Sun, F.,Li, Y., & Calu, D. J.* (2022). Dopamine in the Dorsal Bed Nucleus of Stria Terminalis signals Pavlovian sign-tracking and reward violations. bioRxiv, 2022.2006.2021.497039. [Full Text] [PDF]\r\t\rSingh, S., Sarroza, D., English, A., Whittington, D., Dong, A., van der Stelt, M., Li, Y., Zweifel, L., Bruchas, M. R., Land, B. B., & Stella, N.* (2022). ABHD6 selectively controls metabotropic-dependent increases in 2-AG production. bioRxiv, 2022.2005.2018.492553. [Full Text] [PDF]\r\t\rJiang, P.*, Kemper, K. M., Chang, K.-T., Qian, C., Li, Y., Guan, L., van Hasselt, P., Caradonna, S. J., & Strich, R. (2022). An in situ cut-and-paste genome editing platform mediated by CRISPR/Cas9 or Cas12a. bioRxiv, 2022.2003.2030.486486. [Full Text] [PDF]\r\t\rMayer, F. P.#*, Niello, M.#, Cintulova, D., Sideromenos, S., Maier, J., Li, Y., Bulling, S., Kudlacek, O., Schicker, K., Iwamoto, H., Deng, F., Wan, J., Holy, M., Katamish, R., Sandtner, W., Li, Y., Pollak, D., Blakely, R. D., Mihovilovic, M., Baumann, M. H., & Sitte, H. H.* (2022). Serotonin-releasing agents with reduced off-target effects. Research Square. [Full Text] [PDF]\r\t\rWang, H., Qian, T., Zhao, Y., Zhuo, Y., Wu, C., Osakada, T., Chen, P., Ren, H., Yan, Y., Geng, L., Fu, S., Mei, L., Li, G., Wu, L., Jiang, Y., Qian, W., Peng, W., Xu, M., Hu, J., Chen, L., Tang, C., Lin, D., Zhou, J.-N., & Li, Y.* (2022). A toolkit of highly selective and sensitive genetically encoded neuropeptide sensors. bioRxiv,, 2022.2003.2026.485911. [Full Text] [PDF]\r\t\rZou, J., Trinh, S., Erskine, A., Jing, M., Yao, J., Walker, S., Li, Y.., & Hires, S. A.* (2021). Directed motor actions and choice signalling drive cortical acetylcholine dynamics. bioRxiv,, 2021.2012.2021.473699. [Full Text] [PDF]\r\t\rAlbarran, E., Sun, Y., Liu, Y., Raju, K., Dong, A., Li, Y., Wang, S., Sudhof, T. C.*, & Ding, J. B.* (2021). Postsynaptic synucleins mediate vesicular exocytosis of endocannabinoids. bioRxiv, 2021.2010.2004.462870. [Full Text] [PDF]\r\t\rSturgill, J. F., Hegedus, P., Li, S. J., Chevy, Q, Siebels, A., Jing, M., Li, Y., Hangya, B.* & Kepecs, A.*(2020). Basal forebrain-derived acetylcholine encodes valence-free reinforcement prediction error. bioRxiv, 2020.02.17.953141. [Full Text] [PDF]\r\rWu, Z.#, Cui, Y.#, Wang, H.#, Wu, H., Wan, Y., Li, B., Wang, L., Pan, S., Peng, W., Dong, A., Yuan, Z., Jing, M., Xu, M., Luo, M.*, & Li, Y.* (2023). Neuronal activity-induced, equilibrative nucleoside transporter-dependent, somatodendritic adenosine release revealed by a GRAB sensor. Proceedings of the National Academy of Sciences, 120(14), e2212387120. [Full Text] [PDF]\r\rDong, H.#, Li, M.#, Yan, Y., Qian, T., Lin, Y., Ma, X., Vischer, H. F., Liu, C., Li, G., Wang, H., Leurs, R., & Li, Y.* (2023). Genetically encoded sensors for measuring histamine release both in vitro and in vivo. Neuron. [Full Text] [PDF]\r\rZeng, J.#*, Li, X.#, Zhang, R., Lv, M., Wang, Y., Tan, K., Xia, X., Wan, J., Jing, M., Zhang, X., Li, Y., Yang, Y., Wang, L., Chu, J., Li, Y., & Li, Y.*. (2023). Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. Neuron [Full Text] [PDF]\r\rQian, T.#, Wang, H.#, Wang, P.#, Geng, L., Mei, L., Osakada, T., Wang, L., Tang, Y., Kania, A., Grinevich, V., Stoop, R., Lin, D., Luo, M., & Li, Y.* (2023). A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nature Biotechnology. [Full Text] [PDF]\r\rWu, Z.*, He, K., Chen, Y., Li, H., Pan, S., Li, B., Liu, T., Wang, H., Du, J., Jing, M., & Li, Y.* (2021). A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo Neuron, 110(5), 770-782.e775. [Full Text] [PDF]\r\rDong, A., He, K., Dudok, B., Farrell, J. S., Guan, W., Liput, D. J., Puhl, H. L., Cai, R., Wang, H., Duan, J., Albarran, E., Ding, J., Lovinger, D. M., Li, B., Soltesz, I., & Li, Y.*. (2021). A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nature Biotechnology. [Full Text] [PDF]\r\rQian, C., Wu, Z., Sun, R., Yu, H., Zeng, J., Rao, Y., & Li, Y. *. (2021). Localization, proteomics, and metabolite profiling reveal a putative vesicular transporter for UDP-glucose. eLife, https://doi.org/10.7554/eLife.65417. [Full Text] [PDF]\r\rWan, J., Peng, W., Li, X., Qian, T., Song, K., Zeng, J., Deng, F., Hao, S., Feng,J., Zhang, P., Zhang, Y., Zou, J., Pan, S., Shin, M., Venton, B. J., Zhu, J. J., Jing, M., Xu, M., Li, Y.*.(2021). A genetically encoded sensor for measuring serotonin dynamics. Nature Neuroscience, https://doi.org/10.1038/s41593-021-00823-7. [Full Text] [PDF]\r\rSun, F.#, Zhou, J.#, Dai, B.#, Qian, T., Zeng, J., Li, X., Zhuo, Y., Zhang, Y., Wang, Y., Qian, C., Tan, K., Feng, J., Dong, H., Lin, D.*, Cui, G.*, & Li, Y.*.(2020). Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nature Methods, 17(11), 1156-1166. [Full Text] [PDF]\r\t\rJing, M.*, Li, Y., Zeng, J., Huang, P., Skirzewski, M., Kljakic, O., Peng, W., Qian, T., Tan, K., Wu, R., Zhang, S., Pan, S., Xu, M., Li, H., Saksida, L. M., Prado, V. F., Bussey, T., Prado, M. A. M., Chen, L., Cheng, H., Li, Y.*.(2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nature Methods, 17(11), 1139-1146. [Full Text] [PDF]\r\t\rYu, H., Zhao, T., Liu, S., Wu, Q., Johnson, O., Wu, Z., Zhuang, Z., Shi, Y., He, R., Yang, Y., Sun, J., Wang, X., Xu, H., Zeng, Z., Lei, X., Luo, W.* & Li, Y.*. (2019). MRGPRX4 is a bile acid receptor for human cholestatic itch. eLife, 8, e48431. [Full Text] [PDF]\r\t\rFeng, J., Zhang, C., Lischinsky, J. E., Jing, M., Zhou, J., Wang, H., Zhang, Y., Dong, A., Wu, Z., Wu, H., Chen, W., Zhang, P., Zou, J., Hires, S. A., Zhu, J. J., Cui, G., Lin, D., Du, J. & Li, Y.* (2019). A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron, 102(4), 745-761. [Full Text] [PDF]\r\rWu, Z.#, Feng, J.#, Jing, M., & Li, Y.* (2019). G protein-assisted optimization of GPCR-activation based (GRAB) sensors. Neural Imaging and Sensing 2019, vol. 10865, p. 108650N. International Society for Optics and Photonics. [Full Text] [PDF]标签: 北京大学 Idg/麦戈文大脑研究所
相关热点