热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
郑甲山
2023-05-22 14:56
  • 郑甲山
  • 郑甲山 - 副教授-鲁东大学-数学与统计科学学院-个人资料

近期热点

资料介绍

个人简历


学习经历
大学本科 2004.9-2008.7 临沂师范学院 理学学士 数学与应用数学 全日制
硕士研究生 2008.9-2011.6 东北电力大学 理学硕士 应用数学 全日制
博士研究生 2011.9-2015.6 北京理工大学 理学博士应用数学全日制
博士后研究 2018.9-至今 中国人民大学 博士后 应用数学 在职
工作经历
2018.01-至今 鲁东大学数学与统计科学学院 副教授
2015.07-2017.12 鲁东大学数学与统计科学学院 讲师
近年来获得奖励情况和荣誉称号
2014年度博士研究生国家奖学金
国际杂志《Journal Mathematics and Computer Science》的客座主编

研究领域


流体力学与偏微分方程理论

近期论文


[1] 独立作者, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, Journal of Differential Equations, 259(1)(2015), 120-140. 该论文为ESI高被引论文。
[2] 第一作者,Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in $N$ dimensions, Journal of Differential Equations, 266 (2019) ,1969–2018.
[3] 独立作者, Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with nonlinear diffusion,Journal of Differential Equations, 263(2017), 2606-2629.
[4] 独立作者,An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, Journal of Differential Equations, 10.1016/j.jde.2019.03.013.
[5] 通讯作者, A note for global existence of a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Nonlinearity, 31 (2018) 4602–4620.
[6] 独立作者,Boundedness of solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis--haptotaxis model with generalized logistic source, Nonlinearity, 30(2017) ,1987-2009 .
[7] 独立作者,Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, Discrete and Continuous Dynamical Systems- Series A, (37)(1)(2017), 627-643.
[8] 第一作者, A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractant,Discrete and Continuous Dynamical Systems - Series B, (22)(2)(2017), 669-686.
[9] 通讯作者, Global existence and boundedness of solution of a parabolic-ODE-parabolic chemotaxis--haptotaxis model with (generalized) logistic source, Discrete Contin. Dyn. Syst. Ser. B., doi:10.3934/dcdsb.2018324.
[10] 独立作者, A note on boundedness of solutions to a higher-dimensional quasi-linear chemotaxis system with logisticsource, Zeitschriftfür Angewandte Mathematik und Mechanik, (97)(4)(2017) , 414-421.
[11] 独立作者, Boundedness and global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with nonlinear a logistic source,Journal of Mathematical Analysis and Applications, 450(2017), 1047-1061.
[12] 通讯作者, A new result for global solvability and boundedness in the N-dimensional quasilinear chemotaxis model with logistic source and consumption of chemoattractant,Journal of Mathematical Analysis and Applications,(475)(1)(2019),895-917.
[13] 独立作者, Boundedness in a two-species quasi-linear chemotaxis system with two chemicals, Topological methods in nonlinear analysis, (49)(2)(2017), 463-480.
[14] 第一作者, Well-posedness for a class of biological diffusion models with hysteresis effect, Zeitschrift für angewandte Mathematik und Physik, 66(3)(2015), 771-783.
[15] 独立作者, Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with logistic source, Journal of Mathematical Analysis and Applications, 431(2)(2015), 867-888.
[16] 第一作者,Periodic solutions of non-isothermal phase separation models with constraint, Journal of Mathematical Analysis and Applications, 432(2015), 1018-1038.
[17] 独立作者, Boundedness in a three-dimensional chemotaxis--fluid system involving the tensor-valued sensitivity with saturation, Journal of Mathematical Analysis and Applications, 442(1) (2016), 353-375.
[18] 独立作者, A new result for global existence and boundedness of solutions to a parabolic--parabolic Keller--Segel system with logistic source, Journal of Mathematical Analysis and Applications, 462(1)(2018), 1-25.
[19] 通讯作者, Periodic solutions to a class of biological diffusion models with hysteresis effect, Nonlinear Analysis: Real World Applications, (27)(2016) ,297-311.
[20] 第一作者, Boundedness and decay behavior in a higher dimensional quasilinear chemotaxis system with nonlinear logistic source, Computers & Mathematics with Applications, 72(10)(2016), 2604-2619.

相关热点

扫码添加好友