赵杰
近期热点
资料介绍
个人简历
目前已发表SCI论文40余篇,其中第一作者和通讯作者SCI论文25篇,主要发表在以下相关杂志上:《Soil Biology & Biochemistry》、《Plant and Soil》、《Forest Ecology and Management》、《Ecological Indicators》、《Applied Soil Ecology》、《European Journal of Soil Biology》、《Pest Management Science》、《Soil Ecology Letters》、《Pedosphere》、《Frontiers in Plant Sciences》、《Nematology》等。先后获得中国生态学学会青年科技奖、中科院青促会优秀会员、中科院西部学者和中科院广州分院优秀青年科技工作者等荣誉称号。工作经历2020.01--至今 中国科学院亚热带农业生态研究所 研究员2017.06—2018.03 University of Western Australia 访问学者2015.1--2019.12 中国科学院亚热带农业生态研究所 副研究员2012.7--2014.12 中国科学院亚热带农业生态研究所 助理研究员教育经历2011.1-2012.1 University of Vermont 交流学习2007.9-2012.7 中科院华南植物园 生态学/博士2003.9-2007.7 山东大学(威海) 生物技术专业/理学学士承担科研项目[1]中科院青年创新促进会优秀会员项目,2020.01-2022.12,总经费300万元;[2]国家自然科学基金面上项目:喀斯特人工牧草生态系统管理对土壤微食物网的影响(41877055),2018.01-2021.12,直接经费62万元;[3]所青年创新团队项目B类:喀斯特土壤生态服务提升的生物调控机制(2017QNCXTD_ZJ),2017.07-2020.06,150万元;[4]中科院青促会项目(2015303),2015.01-2018.12,40万元;[5]中科院西部之光西部学者A类项目:喀斯特水土要素耦合关系与土壤关键生态服务提升研究,2019.01-2021.12,50万元[6]所重点实验室“择优支持”项目:豆科植物对喀斯特人工牧草地土壤食物网及其功能的影响(ISA2016102),2016.07-2018.12,20万元;[7]广西自然科学基金面上项目:豆科灌木对喀斯特人工牧草生态系统土壤食物网的作用机制,2019.01-2020.12,12万元;[8]国家自然科学青年基金项目:喀斯特植被恢复初期土壤线虫对添加和剔除豆科植物的响应,2014.1-2016.12,22万元;[9]中国科学院“西部之光”人才培养项目:喀斯特植被演替与土壤微生物和线虫互相作用机制研究,2013.1-2015.12,10万元。研究领域
土壤生态学和恢复生态学,研究兴趣是植被与土壤生物相互作用,主要以土壤微生物和土壤线虫群落为工具开展相关研究,关注土壤微生物群落和线虫群落组成状况及功能。目前,研究主要在我国西南喀斯特退化生态系统,基于喀斯特生态系统的退化和恢复开展。""近期论文
[1]Zhao, J., Xiao, J., Zhang, W., Fu, Z., Zhang, M., Liu, T., Tan, Q., Wang, K., 2019. A method for estimating nematode body lengths for use in the calculation of biomass via a simplified formula. Soil Biology and Biochemistry 134, 36-41.[2]Zhao, J., Xun, R., He, X., Zhang, W., Fu, W., Wang, K., 2015. Size spectra of soil nematode assemblages under different land use types. Soil Biology and Biochemistry 85, 130-136.[3]Li. J., Peng, P., Zhao, J.*, 2019. Assessment of soil nematode diversity based on different taxonomic levels and functional groups. Soil Ecology Letters. Doi: org/10.1007/s42832-019-0019-5[4]Zhao, J., He, X., Zhang, W., Nie, Y., Fu, Z., Wang, K., 2015. Unusual soil nematode communities on karst mountain peaks in southwest China. Soil Biology and Biochemistry 88, 414-419.[5]Zhao, J., Li, D., Fu, S., He, X., Fu, Z., Zhang, W., Wang, K., 2016. Using the biomasses of soil nematode taxa as weighting factors for assessing soil food web conditions. Ecological Indicators 60, 310-316.[6]Gao, D., Wang, F., Li, J., Yu, S., Li, Z., Zhao, J.*, 2019. Soil nematode communities as indicators of soil health in different land use types in tropical area. Nematology 1, 1-16.[7]Gao, D., Wang, X., Fu, S., Zhao, J.*, 2017. Legume plants enhance the resistance of soil to ecosystem disturbance. Frontiers in Plant Science 8.[8]Ye, Y., Rui, Y., Zeng, Z., He, X., Wang, K., Zhao, J.*, 2019. Responses of soil nematode community to the cultures of grass and/or legume forage species in a karst ecosystem. Pedosphere (accepted).[9]Zhang, W., Zhao, J.#, Pan, F., Li, D., Chen, H., Wang, K., 2015. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant and Soil 391, 77-91.[10]Ciobanu, M., Popovici, I., Zhao, J.*, Stoica, I.-A., 2015. Patterns of relative magnitudes of soil energy channels and their relationships with environmental factors in different ecosystems in Romania. Scientific Reports 5, 17606.[11]Zhao, J., He, X., Wang, K., 2015. A hypothetical model that explains differing net effects of inorganic fertilization on biomass and/or abundance of soil biota. Theoretical Ecology 8, 505-512.[12]Zhao, J., Li, S., He, X., Liu, L., Wang, K., 2014. The soil biota composition along a progressive succession of secondary vegetation in a karst area. PLOS ONE 9, e112436.[13]Zhao, J., Neher, D., 2013. Soil nematode genera that predict specific types of disturbance. Applied Soil Ecology 64, 135-141.[14]Zhao, J., Neher, D., 2014. Soil energy pathways of different ecosystems using nematode trophic group analysis: a meta analysis. Nematology 16, 379-385.[15]Zhao, J., Neher, D., Fu, S., Li, Z., Wang, K., 2013. Non-target effects of herbicides on soil nematode assemblages. Pest Management Science 69, 679-684.[16]Zhao, J., Shao, Y., Wang, X., Neher, D.A., Xu, G., Li, Z.a., Fu, S., 2013. Sentinel soil invertebrate taxa as bioindicators for forest management practices. Ecological Indicators 24, 236-239.[17]Zhao, J., Wan, S., Fu, S., Wang, X., Wang, M., Liang, C., Chen, Y., Zhu, X., 2013. Effects of understory removal and nitrogen fertilization on soil microbial communities in Eucalyptus plantations. Forest Ecology and Management 310, 80-86.[18]Zhao, J., Wan, S., Li, Z., Shao, Y., Xu, G., Liu, Z., Zhou, L., Fu, S., 2012. Dicranopteris-dominated understory as major driver of intensive forest ecosystem in humid subtropical and tropical region. Soil Biology and Biochemistry 49, 78-87.[19]Zhao, J., Wan, S., Zhang, C., Liu, Z., Zhou, L., Fu, S., 2014. Contributions of understory and/or overstory vegetations to soil microbial PLFA and nematode diversities in eucalyptus monocultures. PLOS ONE 9, e85513.[20]Zhao, J., Wang, F., Li, J., Zou, B., Wang, X., Li, Z., Fu, S., 2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry 75, 1-10.[21]Zhao, J., Wang, X., Shao, Y., Xu, G., Fu, S., 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry 43, 954-960.[22]Zhao, J., Wang, X., Wang, X., Fu, S., 2014. Legume-soil interactions: legume addition enhances the complexity of the soil food web. Plant and Soil 385, 273-286.[23]Zhao, J., Zeng, Z., He, X., Chen, H., Wang, K., 2015d. Effects of monoculture and mixed culture of grass and legume forage species on soil microbial community structure under different levels of nitrogen fertilization. European Journal of Soil Biology 68, 61-68.[24]Zhao, J., Zhang, W., Wang, K., Song, T., Du, H., 2014. Responses of the soil nematode community to management of hybrid napiergrass: The trade-off between positive and negative effects. Applied Soil Ecology 74, 134-144.[25]Zhao, J., Zhao, C., Wan, S., Wang, X., Zhou, L., Fu, S., 2015. Soil nematode assemblages in an acid soil as affected by lime application. Nematology 17, 179-191[26]Chen, H., Li, D., Zhao, J., Xiao, K., Wang, K., 2018. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis. Agriculture, Ecosystems & Environment 252, 126-131.[27]Chen, H., Li, D., Zhao, J., Zhang, W., Xiao, K., Wang, K., 2018. Nitrogen addition aggravates microbial carbon limitation: Evidence from ecoenzymatic stoichiometry. Geoderma 329, 61-64.[28]Chen, Y., Cao, J., Zhao, J., Wu, J., Zou, X., Fu, S., Zhang, W., 2019. Labile C dynamics reflect soil organic carbon sequestration capacity: Understory plants drive topsoil C process in subtropical forests. Ecosphere 10, e02784.[29]Chen, Y., Zhang, Y., Cao, J., Fu, S., Hu, S., Wu, J., Zhao, J., Liu, Z., 2019. Stand age and species traits alter the effects of understory removal on litter decomposition and nutrient dynamics in subtropical Eucalyptus plantations. Global Ecology and Conservation, e00693.[30]Hu, P., Zhang, W., Xiao, L., Yang, R., Xiao, D., Zhao, J., Wang, W., Chen, H., Wang, K., 2019. Moss-dominated biological soil crusts modulate soil nitrogen following vegetation restoration in a subtropical karst region. Geoderma 352, 70-79.[31]Li, J., Li, Z., Wang, F., Zou, B., Chen, Y., Zhao, J., Mo, Q., Li, Y., Li, X., Xia, H., 2015. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biology and Fertility of Soils 51, 207-215.[32]Pan, F., Liang, Y., Zhang, W., Zhao, J., Wang, K., 2016. Enhanced nitrogen availability in karst ecosystems by oxalic acid release in the rhizosphere. Frontiers in Plant Science 7, 687.[33]Shao, Y., Wang, X., Zhao, J., Wu, J., Zhang, W., Neher, D.A., Li, Y., Lou, Y., Fu, S., 2016. Subordinate plants sustain the complexity and stability of soil micro-food webs in natural bamboo forest ecosystems. Journal of Applied Ecology 53, 130-139.[34]Wan, S., Liu, Z., Chen, Y., Zhao, J., Ying, Q., Liu, J., 2019. Effects of lime application and understory removal on soil microbial communities in subtropical eucalyptus L’Hér plantations. Forests 10, 338.[35]Wan, S., Zhang, C., Chen, Y., Zhao, J., Wang, X., Wu, J., Zhou, L., Lin, Y., Liu, Z., Fu, S., 2014. The understory fern Dicranopteris dichotoma facilitates the overstory Eucalyptus trees in subtropical plantations. Ecosphere 5, art51.[36]Wan, S., Zhang, C., Chen, Y., Zhao, J., Zhu, X., Wu, J., Zhou, L., Lin, Y., Liu, Z., Fu, S., 2015. Interactive effects of understory removal and fertilization on soil respiration in subtropical Eucalyptus plantations. Journal of Plant Ecology 8, 284-290.[37]Wang, X., Zhang, W., Shao, Y., Zhao, J., Zhou, L., Zou, X., Fu, S., 2019. Fungi to bacteria ratio: Historical misinterpretations and potential implications. Acta Oecologica 95, 1-11.[38]Wang, X., Zhao, J., Wu, J., Chen, H., Lin, Y., Zhou, L., Fu, S., 2011. Impacts of understory species removal and/or addition on soil respiration in a mixed forest plantation with native species in southern China. Forest Ecology and Management 261, 1053-1060.[39]Xiao, S., Zhang, W., Ye, Y., Zhao, J., Wang, K., 2017. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem. Scientific Reports 7, 41402.[40]Yu, S., Chen, Y., Zhao, J., Fu, S., Li, Z., Xia, H., Zhou, L., 2017. Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China. Science of the Total Environment 607, 160-167.[41]Zhang, C., Li, X., Chen, Y., Zhao, J., Wan, S., Lin, Y., Fu, S., 2016. Effects of Eucalyptus litter and roots on the establishment of native tree species in Eucalyptus plantations in South China. Forest Ecology and Management 375, 76-83.标签:
相关热点
最新收录
- 千奈美(ちなみん) 06-25
- 皆川琉衣(皆川るい) 06-25
- 凪光(凪ひかる) 06-25
- 织本濑里乃(織本せりの 06-25
- 冈本莉里 岡本莉里 (おか 06-25
- 凯蒂·佩里(水果姐) 06-25
- 吉高宁宁(吉高寧々 Nene 06-25
- 水咲优美(水咲優美) 06-25
- 三月光(三月ひかる) 06-21
- 澪川遥(澪川はるか) 06-21