卿海
近期热点
资料介绍
个人简历
主要从事结构尺度效应,复合材料及结构力学,固体力学,计算固体力学方面的研究工作,主持国家自然科学基金、江苏省自然科学基金、江苏省科技厅及教育部等科研项目多项。教育经历:(1) 2002.9至2007.7, 清华大学, 固体力学, 博士,导师: 杨卫院士(2) 2005.4至2006.4, 法国特鲁瓦工业大学, 机械工程系, 访问博士生, 导师: 吕坚院士(3) 1998.9至2002.7, 西安交通大学, 工程力学专业, 学士科研与学术工作经历:(1) 2014.7至现在, 南京航空航天大学, 结构工程与力学系, 教授(2) 2011.3至2014.6, 西门子风能公司(丹麦), 复合材料叶片研发中心, 高级工程师(3) 2007.9至2011.2, 丹麦科技大学, 博士后, 导师: Leon Mishnaevsky教授研究领域
"固体力学,复合材料与结构,微纳结构分析,计算固体力学"近期论文
[12]Qing H*.On Well-Posedness of Two-Phase Local/Nonlocal Integral Polar Models for Consistent Axisymmetric Bending of Circular Microplates. Applied Mathematics and Mechanics-English Edition. 2022.[11]Bian PL, Qing H*. Structural analysis of nonlocal nanobeam via FEM using equivalent nonlocal differential model. Engineering with Computers,DOI: 10.1007/s00366-021-01575-5.[10]Zhang P, Schiavone P, Qing H*.Nonlocal gradient integral models with a bi-Helmholtz averaging kernel for functionally graded beams.Applied Mathematical Modelling. 2022; 107: 740-763.[9]Zhang P, Schiavone P, Qing H*.Stress-driven local/nonlocal mixture model for buckling and free vibration of FG sandwich Timoshenko beams resting on a nonlocal elastic foundation.Composite Structures,2022; 289: 115473.[8]Qing H*, Wei L. Linear and Nonlinear Free Vibration Analysis of Functionally Graded Porous Nanobeam Using Stress-Driven Nonlocal Integral Model. Communications in Nonlinear Science and Numerical Simulation,2022; 109: 106300.[7]Ren YM, Qing H*.On the consistency of two-phase local/nonlocal piezoelectric integral model. Applied Mathematics and Mechanics-English Edition, 2021;42(11): 1581–1598.[6]Zhang P, Qing H*. Two-phase nonlocal integral models with a bi-Helmholtz averaging kernel for nanorods. Applied Mathematics and Mechanics-English Edition, 2021; 42(10):1379–1396.[5] Zhang P, Qing H*. On well-posedness of two-phase nonlocal integral models for higher-order refined shear deformation beams. Applied Mathematics and Mechanics-English Edition. 2021;42:931–950.[4] Zhang P, Qing H*. Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Composite Structures. 2021;265, 113770.[3] Tang Y, Qing H*. Elastic buckling and free vibration analysis of functionally graded Timoshenko beam with nonlocal strain gradient integral model. Applied Mathematical Modelling. 2021;96:657-77.[2] Bian PL, Qing H*, Gao CF. One-dimensional stress-driven nonlocal integral model with bi-Helmholtz kernel: Close form solution and consistent size effect. Applied Mathematical Modelling. 2021;89:400-12.[1] Bian PL, Qing H*. Torsional static and vibration analysis of functionally graded nanotube with bi-Helmholtz kernel based stress-driven nonlocal integral model. Applied Mathematics and Mechanics-English Edition. 2021;42:425-40. 相关热点
最新收录
- 椛岛光 06-01
- 星乃梦奈(ほしの ゆな 06-01
- 沖田奈奈 沖田奈々(Nana 06-01
- 藤仁依那 藤にいな(Niina 06-01
- 矢田步美 矢田あゆみ(Ay 06-01
- 妹岳夏目 妹岳なつめ(Na 06-01
- 麻仓香穗里 麻仓かほり 06-01
- 立花广美 (立花ひろみ H 05-31
- 里中瑞穗(里中みずほ Mi 05-31
- 结月莉亚(結月りあ) 05-31