孔祥鲲
近期热点
资料介绍
个人简历
孔祥鲲,博士,副教授,硕导;美国电气电子工程师学会 (IEEE)会员,英国圣安德鲁斯大学公派访问学者。主要从事人工电磁材料、雷达目标特性、雷达隐身技术、低散射天线、材料电磁性能测量等方面的研究。在IEEE Transactions on Antennas and Propagation,IEEE Journal of Selected Topics in Quantum Electronics, IEEE/OSA Journal of Lightwave Technology, IEEE Photonics Journal, IEEE Transactions on Plasma Science, Applied Physics Letters,Optic Express,Journal of Applied Physics,Applied Optics,Laser Physics,Physics of Plasmas,物理学报,宇航学报、微波学报等期刊上发表学术论文150余篇,其中SCI收录论文100余篇,被引1932次。2016年获江苏省高校科技研究优秀成果三等奖。主持国家自然科学面上基金、江苏省自然科学基金青年项目、装备预研领域内基金项目、航空科学基金、毫米波国家重点实验室基金、军事科学院电磁防护工程研究所项目、华为技术有限公司横向课题等。是美国电气电子工程师学会 (IEEE)、美国光学协会(OSA)、美国物理联合会(AIP)、英国物理学会(IOP)、Elsevier综合类学术期刊的活跃作者。学术会议组织与特邀报告:[1] IEEE International Conference on Computational Electromagnetics (ICCEM 2019), Mar. 20-22, Shanghai, China. Session Co-Chair;[2] 2019年全国超材料大会分会场特邀报告,2019年11月24-27日,中国西安;[3] IEEE Asia-Pacific Microwave Conference (APMC2019), Singapore;[4] 2020达索系统SIMULIA CST电磁仿真应用研讨会特邀报告,2020年9月10日,中国南京;[5] IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT 2020),Shenzhen,China. Invited Talk;[6] 国防科技大学,湘江论坛——“电磁调控新技术”特邀报告,2020年12月5日,中国长沙;[7] IEEE 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT 2021),Nanjing,China. Sesstion Chair.[8] IEEE 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT 2022),Harbin,China. Sesstion Chair.专著 刘少斌,章海锋,莫锦军,孔祥鲲,刘崧. 等离子体光子晶体理论. 北京:科学出版社,2016.科研获奖:2016年获江苏省教育科学研究成果三等奖。发明专利:(1)发明专利,基于电磁诱导透明的可重构射频识别标签(授权公告号CN104408506B)发明人:孔祥鲲 刘少斌 丁国文 陈琳 刘思源(2)发明专利,一种中频宽频带透波、高频和低频极化转换的隐身天线罩(授权公告号CN110265780B)发明人:王玲玲 刘少斌 孔祥鲲(3)发明专利,吸透可重构实现电磁波非对称传输和能量隔离的天线罩(授权公告号CN111725626B)发明人:袁警;孔祥鲲(4)发明专利,一种基于水的极化可重构多功能频率选择吸波体(授权公告号CN112117545B)发明人:孔令奇; 孔祥鲲; 姜顺流; 李元鑫实用新型专利:(1)实用新型,基于水的温控频率选择吸波体(授权公告号CN209448026U)发明人:孔祥鲲 严祥熙 王奇 石桦宇 刘晓春(2)实用新型,一种基于具有极化转换功能的相位梯度超表面的低RCS天线(授权公告号CN211829191U)发明人:王奇; 孔祥鲲; 袁警(3)实用新型,适用于太阳能电池阵的透明宽带低散射超表面(授权公告号CN211957940U)发明人:姜顺流;孔令奇; 王奇; 孔祥鲲(4)实用新型,一种液态可重构雷达隐身视窗(授权公告号CN215255793U)发明人:林伟豪; 王雪孟; 金鑫; 孔祥鲲(5)实用新型,一种用于外太空恶劣环境的多层耦合吸波体(授权公告号CN213907319U)发明人:孔令奇; 姜顺流; 严祥熙; 孔祥鲲(6)实用新型,一种基于PIN管的智能可重构频率选择雷达吸波体(授权公告号CN212848818U)发明人:孔祥鲲; 袁警承担的科研项目情况: 国家自然科学基金面上项目(62071227)Chinese Natural Science Foundation (Grant No. 62071227)江苏省自然科学基金面上项目(BK20201289)Natural Science Foundation of Jiangsu Province of China (BK20201289)装备预研共用技术和领域基金(61402090103),(南京理工大学、南京航空航天大学联合申报)毫米波国家重点实验室开放课题(2020127)Open Research Program in China’s State Key Laboratory of Millimeter Waves (Grant No.K2020127)中国博士后面上项目(2016M601802)China Postdoctoral Science Foundation (Grant No. 2016M601802)江苏省博士后面上项目(1601009B)Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1601009B)军事科学院电磁防护工程项目华为技术有限公司横向课题科研项目[1] 超材料吸波体电性能仿真[2] 抑制带内干扰的非互易性天线罩设计[3] 柔性可共形**超材料吸波体研究[4] 《天线原理》课程形象化互动教学改革探索[5] 温度调谐的可重构水基吸波体研究[6] 非线性等离子体超材料中电磁波非互易传播的调控与实现[7] 非线性等离子体光子晶体功能器件设计与电磁调控[8] 电磁波单向导波非互易功能器件研究[9] 微波段大气窗口超材料结构设计及其电磁性能研究[10] 带外吸收型电磁超材料频选结构设计研究[11][12] 可调谐电磁超材料/超表面器件设计研究[13] 非线性各向异性周期媒质中电磁波非互易传播特性研究[14] 等离子体非线性效应研究[15] 宽入射角极化不敏感电磁超材料吸收体的设计与应用研究[16] 基于类电磁诱导透明特性的超材料极化转换装置研究[17] 等离子体光子晶体在大气微波辐射计中的应用[18] 基于固态等离子体超材料实现的电磁诱导透明特性研究授课信息天线原理 /2020-2021 /秋学期 /40课时 /0.0学分 /04103370研究领域
(1) 人工电磁材料特性(2) 频率选择表面设计(3) 雷达天线罩设计与应用(4) 电磁超表面与天线一体化设计(5) 计算电磁学。"电磁超材料、计算电磁学"近期论文
2021年(1) Yu, Q., Liu, S., Monorchio, A., Kong, X., Brizi, D., Zhang, X., & Wang, L. (2021). Miniaturized Wide-Angle Rasorber with a Wide Inter-absorption High Transparent Bandpass based on Multiple 2.5-D Resonators. IEEE Antennas and Wireless Propagation Letters. (2) Kong, X., Lin, W., Wang, X., Xing, L., Jiang, S., Kong, L., & Liu, M. (2021). Liquid reconfigurable stealth window constructed by a metamaterial absorber. JOSA B, 38(11), 3277-3284.(3) Sun, F., Xing, L., Xu, Q., Kong, X., Wang, H., & Zhang, G. (2021). An Attitude Independent Liquid Dielectric Resonant Antenna. IEEE Antennas and Wireless Propagation Letters.(4) Kong, X., Kong, L., Jiang, S., Wang, X., Zou, Y., & Xing, L. (2021). Low-Profile and Dual-Polarization Water-Based Frequency Selective Rasorber With Ultrawideband Absorption. IEEE Antennas and Wireless Propagation Letters, 20(12), 2534-2538.(5) Liao, K., Sun, S., Zheng, X., Shao, X., Kong, X., & Liu, S. (2021). A novel polarization converter based on the band-stop frequency selective surface. Chinese Physics B.(6) Jiang, S., Kong, X., Kong, L., Jin, X., & Yuan, J. (2021). Switchable Polarization-Insensitive Frequency-Selective Surface Reflector/Absorber With Low Profile by Using Magnetic Material. IEEE Antennas and Wireless Propagation Letters, 20(10), 2078-2082.(7) Liu, Z., Bornemann, J., Mamedes, D. F., Liu, S., Kong, X., & Zhao, X. (2021). A Wideband Fabry-Pérot Antenna With Enhanced Gain in the High-Frequency Operating Band by Adopting a Truncated Field Correcting Structure. IEEE Transactions on Antennas and Propagation, 69(12), 8221-8228.(行业顶刊)(8) Yuan, J., Kong, X., Wang, X., Jiang, S., & Kong, L. (2021). Polarization‐independent reconfigurable frequency selective rasorber/absorber with low‐insertion loss. Microwave and Optical Technology Letters, 63(5), 1339-1345.(9) Wang, X., Kong, X., Jiang, S., Kong, L., & Yuan, J. (2021). Wideband transverse electromagnetic cell design and its application in frequency selective surface measurement. International Journal of RF and Microwave Computer‐Aided Engineering, 31(7), e22690.(10) 孔祥鲲,孔令奇,姜顺流,胡豪斌,张翔.电磁超材料在超宽带雷达隐身微小卫星设计中的应用.宇航学报,2021,42(06):775-782.2020年(1) Yuan, J., Kong, X., Chen, K., Shen, X., Wang, Q., & Wu, C. (2020). Intelligent Radome Design with Multilayer Composites to Realize Asymmetric Transmission of Electromagnetic Waves and Energy Isolation. IEEE Antennas and Wireless Propagation Letters.(2) Xue, F., Liu, S., & Kong, X. (2020). Single‐layer high‐gain flat lens antenna based on the focusing gradient metasurface. International Journal of RF and Microwave Computer‐Aided Engineering, 30(6), e22183.(3) Sajjad, M., Kong, X., Liu, S., Ahmed, A., Rahman, S. U., & Wang, Q. (2020). Graphene-based THz tunable ultra-wideband polarization converter. Physics Letters A, 126567.(4 Yu, Q., Liu, S., Kong, X., Qin, J., Wen, Y., Wang, L., & Xu, Y. (2020). Bandwidth enhancement of a circularly polarized tapered crossed slot antenna with corner parasitic directors. International Journal of RF and Microwave Computer‐Aided Engineering, 30(5), e22173.(5) Liu, Z., Liu, S., Zhao, X., Kong, X., Huang, Z., & Bian, B. (2020). Wideband Gain Enhancement and RCS Reduction of Fabry-Perot Antenna Using Hybrid Reflection Method. IEEE Transactions on Antennas and Propagation.(行业顶刊)(6) Liu, Z., Liu, S., Bornemann, J., Zhao, X., Kong, X., Huang, Z., ... & Wang, D. (2020). A Low-RCS, High-GBP Fabry–Perot Antenna With Embedded Chessboard Polarization Conversion Metasurface. IEEE Access, 8, 80183-80194.(7) Yan, X., Kong, X., Wang, Q., Xing, L., Xue, F., Xu, Y., ... & Liu, X. (2020). Water-based Reconfigurable Frequency Selective Rasorber with Thermally Tunable Absorption Band. IEEE Transactions on Antennas and Propagation. (行业顶刊)(8) Yuan, S., Kong, X., Yu, Q., & Liu, S. (2020). Miniaturization of frequency‐selective rasorber based on 2.5‐D knitted structure. International Journal of RF and Microwave Computer‐Aided Engineering, 30(2), e22066.(9) Kong, X., Jiang, S., Kong, L., Wang, Q., Hu, H., Zhang, X., & Zhao, X. (2020). Transparent metamaterial absorber with broadband radar cross-section (RCS) reduction for solar arrays. IET Microwaves, Antennas & Propagation, 14(13), 1580-1586.(10) Yuan, J., Kong, X., Wang, X., Jiang, S., & Kong, L. (2020). Polarization‐independent reconfigurable frequency selective rasorber/absorber with low‐insertion loss. Microwave and Optical Technology Letters.(11) Song, H., Zhang, Q., Liu, S., Kong, X., Zhao, X., & Huang, Z. (2020). A six-port path-reconfigurable circulator based on Y-type plasma photonic crystal. Photonics and Nanostructures-Fundamentals and Applications, 41, 100831.(12) Kong, X., Wang, Q., Jiang, S., Kong, L., Yuan, J., Yan, X., ... & Zhao, X. (2020). A metasurface composed of 3-bit coding linear polarization conversion elements and its application to RCS reduction of patch antenna. Scientific Reports, 10(1), 1-10.(13) Wu, C., Liu, S., Yu, Q., Kong, X., Yuan, J., & Liao, K. (2020). A low profile miniaturized widely‐spaced triband bandpass FSS using coupled resonance. International Journal of RF and Microwave Computer‐Aided Engineering, 30(11), e22389.2019年(1) Wang, L., Liu, S., Kong, X., Zhang, H., Yu, Q., & Wen, Y. (2019). Frequency-Selective Rasorber With a Wide High-Transmission Passband Based on Multiple Coplanar Parallel Resonances. IEEE Antennas and Wireless Propagation Letters, 19(2), 337-340.(2) Li, R., Kong, X. K., Liu, S. B., Liu, Z. M., & Li, Y. M. (2019). Planar metamaterial analogue of electromagnetically induced transparency for a miniature refractive index sensor. Physics Letters A, 383(32), 125947.(3) Wang, L., Liu, S., Kong, X., Wen, Y., & Liu, X. (2019). Broadband vortex beam generating for multi-polarisations based on a single-layer quasi-spiral metasurface. Electronics Letters, 55(22), 1168-1170.(4) Yu, Q., Liu, S., Monorchio, A., Kong, X., Wen, Y., & Huang, Z. (2019). A miniaturized high-selectivity frequency selective rasorber based on subwavelength resonance and interdigital resonator. IEEE Antennas and Wireless Propagation Letters, 18(9), 1833-1837.(5) Wang, Q., Kong, X., Yan, X., Xu, Y., Liu, S., Mo, J., & Liu, X. (2019). Flexible broadband polarization converter based on metasurface at microwave band. Chinese Physics B, 28(7), 074205.(6) Yu, Q., Liu, S., Kong, X., & Bian, B. (2019). A broadband miniaturized ultra‐thin tri‐band bandpass FSS with triangular layout. International Journal of RF and Microwave Computer‐Aided Engineering, 29(7), e21738.(7) Liu, Z., Liu, S., Kong, X., Huang, Z., Zhao, X., & Liu, J. (2019). Gain enhancement of circularly polarized antenna with dual‐polarization conversion transmitarray. International Journal of RF and Microwave Computer‐Aided Engineering, 29(6), e21669.(8) 严祥熙,孔祥鲲,卞博锐,刘晓春,刘少斌.(2019).覆盖L波段的宽带隐身雷达天线罩设计. 微波学报(02),48-53. doi:10.14183/j.cnki.1005-6122.201902011.2018年(1) Liu, Z., Liu, S., Bian, B., Kong, X., & Zhang, H. (2019). Metasurface‐based low‐profile high‐gain substrate‐integrated Fabry‐Pérot cavity antenna. International Journal of RF and Microwave Computer‐Aided Engineering, 29(4), e21583.2017年(1) Xue, F., Liu, S. B., Zhang, H. F., Wen, Y. D., Kong, X. K., & Li, H. M. (2017). A novel reconfigurable electromagnetically induced transparency based on S-PINs. International Journal of Modern Physics B, 1850030.(2) Hu, Y., Liu, S., Kong, X., & Mao, C. (2017). Low windage resistance frequency-selective rasorber based on windmill-shape coupling line arrays. Electronics Letters, 53(22), 1450-1452.(3) Wang, L. L., Liu, S. B., Zhang, H. F., Kong, X. K., & Liu, L. L.High-impedance surface-based flexible broadband absorber. Journal of Electromagnetic Waves and Applications, (2017): 31(13), 1216-1231.(4) Kong, Xiang-kun, et al. \ 相关热点
最新收录
- 椛岛光 06-01
- 星乃梦奈(ほしの ゆな 06-01
- 沖田奈奈 沖田奈々(Nana 06-01
- 藤仁依那 藤にいな(Niina 06-01
- 矢田步美 矢田あゆみ(Ay 06-01
- 妹岳夏目 妹岳なつめ(Na 06-01
- 麻仓香穗里 麻仓かほり 06-01
- 立花广美 (立花ひろみ H 05-31
- 里中瑞穗(里中みずほ Mi 05-31
- 结月莉亚(結月りあ) 05-31