戴群
近期热点
资料介绍
个人简历
2003年3月毕业于南京航空航天大学计算机系,获计算机软件与理论专业硕士学位,师从陈松灿教授。硕士毕业后留校从事教学工作。2004年4月起在职攻读南航大学计算机应用技术专业博士学位,继续师从陈松灿教授,于2009年9月毕业,同年12月获得博士学位。2003年3月开始在南航大学计算机系任助教;2005年6月起任职讲师2010年6月起任职副教授,同年获得硕导资格2015年6月起任职教授2016年6月获得计算机科学与技术学科博士生指导教师任职资格主讲本科课程:算法设计与分析,计算机图形学。指导学生发表的部分论文:[14] 李锦华(2016硕),戴群*,[13] 李锦华(2016硕),戴群*,etc, A new dual weights optimization incremental learning algorithm for time series ,Applied Intelligence,DOI: 10.1007/s10489-019-01471-y,2019(SCI源刊)[13] 李锦华(2016硕),戴群*,etc, A novel double incremental learning algorithm for time series prediction.Neural Computing & Applications,DOIhttps://doi.org/10.1007/s00521-018-3434-0,2018(SCI源刊)[12] 叶锐(2016硕),戴群,MultiTL-KELM: A Multi-Task Learning Algorithm for Multi-Step-Ahead Time Series Prediction,Applied Soft Computing Journal, DOI information: 10.1016/j.asoc.2019.03.039 .(SCI源刊)[11] 叶锐(2016硕),戴群,李美岭,A hybrid Transfer Learning algorithm incorporating TrSVM with GASEN,Pattern Recognition, Volume 92, August 2019, Pages 192-202。(SCI源刊)[10] 叶锐(2016硕),戴群*,A novel transfer learning framework for time series forecasting,Knowledge-Based Systems,Volume 156,15 September 2018, Pages 74-99.(SCI源刊)[9] 叶锐(2016硕),戴群*,A Novel Greedy Randomized Dynamic Ensemble Selection Algorithm,Neural Processing Letters, 47(2): 565-599 (2018) (SCI收录)[8] 宋刚(2015硕),戴群*,A novel double deep ELMs ensemble system for time series forecasting,Knowledge-Based Systems,134: 31-49 (2017).(SCI收录)[7] 李美岭(2014硕),戴群*,A Novel Knowledge-Leverage-Based Transfer Learning Algorithm,Applied Intelligence,2017,doi:10.1007/s10489-017-1084-z(SCI源刊)[6] 韩晓猛(2014硕),戴群*,Batch-normalized Mlpconv-wise Supervised Pre-training Network In Network,Applied Intelligence,48(1): 142-155 (2018)(SCI收录)[5] 张婷(2013硕),戴群*,Hybrid ensemble selection algorithm incorporating GRASP with path relinking,Applied Intelligence,2016,44(3),704-724(SCI收录)[4] 张婷(2013硕),戴群*,马忠臣 Extreme learning machines' ensemble selection with GRASP,Applied Intelligence,2015,43(2),439-459 (SCI收录)[3] 马忠臣(2012硕),戴群*,Selected an Stacking ELMs for Time Series Prediction,Neural Processing Letters, 2016,44(3): 831-856. SCI收录[2] 马忠臣(2012硕),戴群*,刘宁钟 Several novel evaluation measures for rank-based ensemble pruning with applications to time series prediction,Expert Systems with Applications,Volume 42, Issue 1, January 2015, Pages 280–292(SCI收录)[1] 刘转(2011硕),戴群*,刘宁钟 Ensemble selection by GRASP,Applied Intelligence,2014,41(1),128-144 (SCI收录)承担的科研项目情况:承担的代表性项目1.主持国家自然科学基金青年项目(项目类别:F020508 模式识别理论及应用,项目编号:61100108),执行期为2012年1月至2014年12月,已结题.2.主持国家自然科学基金面上项目(项目类别:F030504 数据挖掘与机器学习,项目编号:61473150),执行期为2015年1月至2018年12月.指导研究生情况:2011年招收计算机科学与技术专业2名硕士生2012、2013年各招收学硕1名,2014、2015年各招收学硕2名已毕业的学生中,有4人获得硕士生国家奖学金、6人获得南航校级优秀硕士学位论文、2人获得江苏省优秀硕士学位论文。2016、2017年各招收了学术型硕士生2名2017年已招收1名博士生,2018年计划招收学硕2名、博士生1名。教育经历2004.42009.9南京航空航天大学计算机应用技术工学博士学位2000.92003.6南京航空航天大学计算机软件与理论工学硕士学位科研项目混合神经网络体系机构及其应用研究基于改进圆形反向传播网络模型的强鲁棒型神经网络研究关于多种神经网络集成剪枝方法的综合研究关于选择性集成学习框架的拓展性研究授课信息算法设计与分析 /2018-2019 /秋学期 /40课时 /0.0学分 /16102280研究领域
学科研究方向一:计算机科学与技术模式识别、数据挖掘与机器学习学科研究方向二:软件工程数据挖掘与机器学习学科研究方向三:网络空间安全""近期论文
[10] 戴群 A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot,Neurocomputing, 2013, 122(25), 258–265(SCI收录)。[9] 戴群 Back-propagation with diversive curiosity: An automatic conversion from search stagnation to exploration,Applied Soft Computing,13(1), 2013, 483–495(SCI收录)。[8] 戴群 A competitive ensemble pruning approach based on cross-validation technique,Knowledge-Based Systems,37, 2013, Pages 394–414(SCI收录)。[7] 戴群*,刘宁钟 Alleviating the problem of local minima in Backpropagation through competitive learning ,Neurocomputing, 2012, 94(1), 152–158(SCI收录)[6] 戴群*,刘宁钟 The build of n-Bits Binary Coding ICBP Ensemble System,Neurocomputing, 2011, 74(17),3509-3519(SCI收录)。[5] 戴群,The Build of a Dynamic Classifier Selection ICBP System And its Application to Pattern Recognition,Neural Computing and Applications,2010,19(1),123-137(SCI收录)。[4] 戴群,陈松灿*,王喆,ICBP-SOM: A Hybrid Neural Network Architecture Based on SOM,软件学报,2009,05期,1329-1336(EI收录)。[3] 戴群,陈松灿*,Integrating the improved CBP model with kernel SOM,Neurocomputing, 2006, 69(16-18),2208-2216(SCI收录)。[2] 戴群,陈松灿*,Chained DLS-ICBP Neural Networks with Multiple Steps Time Series Prediction,Neural Processing Letters,2005, 21(2),1370-4621(SCI收录)。[1] 戴群,陈松灿*,Improved CBP neural network model with applications in time series prediction,Neural Processing Letters, 2003,18(6), 197-211。(SCI收录)。[1]戴群,戴群,戴群等.MultiTL-KELM: A multi-task learning algorithm for multi-step-ahead time series prediction.Appl. Soft Comput. J.,2019[2]戴群,戴群,戴群等.A hybrid transfer learning algorithm incorporating TrSVM with GASEN.Pattern Recogn.,2019[3]戴群,,等.Two novel hybrid Self-Organizing Map based emotional learning algorithms.Neural Comput. Appl.,2019[4]戴群,戴群,戴群等.Several Novel Dynamic Ensemble Selection Algorithms for Time Series Prediction.NEURAL PROCESSING LETTERS,2019[5]戴群,戴群,戴群等.A new dual weights optimization incremental learning algorithm for time series forecasting.APPLIED INTELLIGENCE,2019[6]戴群,戴群,戴群等.A novel double incremental learning algorithm for time series prediction.NEURAL COMPUTING & APPLICATIONS,2019[7]戴群,戴群,戴群等.A novel transfer learning framework for time series forecasting.KNOWLEDGE-BASED SYSTEMS,2018[8]戴群,戴群,戴群等.Considering diversity and accuracy simultaneously for ensemble pruning.APPLIED SOFT COMPUTING,2017[9]戴群,戴群,戴群等.A hierarchical and parallel branch-and-bound ensemble selection algorithm.APPLIED INTELLIGENCE,2017[10]戴群,戴群,戴群等.A novel knowledge-leverage-based transfer learning algorithm.APPLIED INTELLIGENCE,2018[11]戴群,戴群,戴群等.A Novel Greedy Randomized Dynamic Ensemble Selection Algorithm.NEURAL PROCESSING LETTERS,2018[12]戴群,戴群,戴群等.Batch-normalized Mlpconv-wise supervised pre-training network in network.APPLIED INTELLIGENCE,2018[13]戴群,戴群,戴群等.A novel double deep ELMs ensemble system for time series forecasting.KNOWLEDGE-BASED SYSTEMS,2017 相关热点
最新收录
- 椛岛光 06-01
- 星乃梦奈(ほしの ゆな 06-01
- 沖田奈奈 沖田奈々(Nana 06-01
- 藤仁依那 藤にいな(Niina 06-01
- 矢田步美 矢田あゆみ(Ay 06-01
- 妹岳夏目 妹岳なつめ(Na 06-01
- 麻仓香穗里 麻仓かほり 06-01
- 立花广美 (立花ひろみ H 05-31
- 里中瑞穗(里中みずほ Mi 05-31
- 结月莉亚(結月りあ) 05-31