热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
柴彩春
2023-05-11 14:30
  • 柴彩春
  • 柴彩春 - 讲师-南京财经大学-管理科学与工程学院-个人资料

近期热点

资料介绍

个人简历


管理学博士学位。南京财经大学管理科学与工程学院,讲师
主要讲授课程
管理运筹学
学习、工作经历及海外经历
1998.9-2002.6:安徽大学数学系,理学学士
2003.9-2006.6:中国科学技术大学数学系,理学硕士
2013.9-2016.12:南京大学管理科学与工程专业,管理学博士
2014.9-2015.10:University of California, Santa Cruz, 访学
2016.12-至今: 南京财经大学管理科学与工程学院,讲师

研究领域


企业行为演化,运作管理""

近期论文


[1] Chai, C, Xiao, T and Francis, E (2018). Is social responsibility for firms competing on quantity evolutionary stable? Journal of Industrial and Management Optimization,4(1):325-347
[2] Chai, C and Xiao, T (2018). Wholesaling pricing and evolutionary stable strategy in duopoly supply chains with social responsibility. Journal of Systems Science and Systems Engineering, accepted
[3] Caichun Chai, Hailong Zhu, Zhangwei, Feng (2018). Evolutionary Stable Strategies for Supply Chains: Selfishness, Fairness, and Altruism. Journal of Systems Science and Information, accepted
[4] 冯章伟,肖条军,柴彩春(2018) 第三方回收商领导型两级闭环供应链的回收与定价策略,中国管理科学,26(1):118-127
[5] Chai, C(2016). Evolutionary behavior of supply chains: Altruism or fairness. 2016 The First International Conference on Economic and Business,Qingdao, 10.15-17
[6] 柴彩春,肖条军,许甜甜 (2015) 基于Moran过程的制造商生产策略演化分析,系统工程理论与实践(EI/CSSCI),35(9):2262-2270
[7] Kejun Zhuang, Caichun Chai (2012) Stability Analysis and Hyperchaos Control for a 4D Hyperchaotic System, Journal of Information and Computational Science. 9(11): 3055- 3061
[8] Caichun Chai, Jifa Jiang (2011) Competitive Exclusion and Coexistence of Pathogens in a Homosexually-Transmitted Disease Model, PLoS ONE, 6(2): e16467
[9] Caichun Chai, Jifa Jiang (2011) Coexistence of Multiple Pathogen Strains of a Sexually Transmitted Disease Model, Mathematica Applicata, 24(3): 519-526
[10] Caichun Chai, Jifa Jiang (2009) Competitive Exclusion and Coexistence of A Class of Sexually-transmitted Disease Models, Journal of University of Science and Technology of China, 39(6): 570-582
[11] Jifa Jiang, Caichun Chai (2008) The complete classification for dynamics in a homosexually-transmitted disease model, Journal of Mathematical Biology, 56: 373–390

相关热点

扫码添加好友