许雄文
近期热点
资料介绍
个人简历
工作经历 2014.11-至今 华南理工大学电力学院,教学科研。专业方向:制冷与传热。教学主讲课程:《传热学》《流体力学》 2012.9-2014.11 华南理工大学电力学院,博士后。专业方向:工程热物理。 2007.7-2009.8 广东省计量科学研究院质量办公室,质量管理员。 教育经历 2009.9-2012.6 华南理工大学电力学院,电站系统及其控制专业博士研究生。 2004.9-2007.6 华南理工大学电力学院,工程热物理专业硕士研究生。 2000.9-2004.6 华南理工大学电力学院,热能动力工程专业,获工学学士学位; 科研项目 固体表面流动液膜受热蒸发的润湿行为与传热强化 (国家自然科学基金面上项目(51976063))<2020.01-2023.12> 固体表面液膜受热蒸发的润湿与传热行为(广东省自然科学基金(2019A1515011253))<2019.10- 2022.09>混合工质溶液池沸腾气泡成核及换热机理研究(国家自然科学青年基金(5151700))<2015.11- 2018.12> 浓度涨落效应下的混合溶液池沸腾成核机理及传热特性研究(广东省自然科学基金(2017A030313305))<2017.05- 2020.05> 基于降膜冷凝技术的房间空调冷凝器传热性能研究(空调设备及系统运行节能国家重点实验室)<2016.07-2017.07> 单级混合工质直冷式制冷流程性能诊断与控制机理研究(第55批博士后基金支持项目(2014M552195)) 混合工质溶液池沸腾成核换热机理研究(华南理工大学校级项目(2015ZM028)) <2015.01-2016.12> 丙烯在高效换热管外的冷凝换热特性研究(维联传热技术(上海)有限公司) <2015.6-2016.6> 超低温医用冷柜开发及产业化(海信容声(广东)冷柜有限公司) <2015.5-2018.6> -150℃超低温冷柜开发及产业化(海信容声(广东)冷柜有限公司) <2016.7-2018.7> 科研创新 发明专利:许雄文, 李日新, 刘金平. 一种混合工质节流制冷机工况浓度控制系统及其方法. 专利号: ZL201410167863.8, 授权日期:2016.5.4许雄文, 刘金平, 李日新. 单级混合冷剂天然气液化流程冷剂浓度控制系统. 专利号: ZL201410054854.8, 授权日期:2015.12.09许雄文, 刘金平, 张发勇. 一种无制冷剂过热段的制冷冷凝器及其制冷方法[P]. 专利号: ZL201510468993X, 授权日期: 2017.8.25. 教学活动 《传热学》、《流体力学》 指导学生情况 2018年指导研究生张嘉获得大学生制冷大赛华南赛区研究生组第一名。研究领域
"热电界面调控与传热,高效制冷技术"近期论文
[1] Liu J., Liu J., Xu X. Diabatic visualization study of R245fa two phase flow pattern characteristics in horizontal smooth and microfin tube[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119513.[2] Li G., Liu J., Xu X., et al. Contact angle measurements in the refrigerant falling film evaporation process[J]. International Journal of Refrigeration, 2020, 112: 262-269.[3] Wei J., Liu J., Xu X., et al. Experimental and computational investigation of the thermal performance of a vertical tube evaporative condenser[J]. Applied Thermal Engineering, 2019, 160: 114100.[4] Ruan J., Liu J., Xu X., et al. Experimental study of an R290 split-type air conditioner using a falling film condenser[J]. Applied Thermal Engineering, 2018, 140: 325-333.[5] Liu J., Liu J., Li R., et al. Experimental study on flow boiling characteristics in a high aspect ratio vertical rectangular mini-channel under low heat and mass flux[J]. Experimental Thermal and Fluid Science, 2018, 98: 146-157.[6] Li R., Liu J., Xu X. Development and validation of a direct passage arrangement method for multistream plate fin heat exchangers[J]. Applied Thermal Engineering, 2018, 130: 1266-1278.[7] Li R., Liu J., Liu J., et al. Measured and predicted upward flow boiling heat transfer coefficients for hydrocarbon mixtures inside a cryogenic plate fin heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 123: 75-88.[8] He J., Liu J., Xu X. Experimental investigation of single bubble growth in the boiling of the superheated liquid mixed refrigerants[J]. International Journal of Heat and Mass Transfer, 2018, 127: 553-565.[9] He J., Liu J., Xu X. Analysis and experimental study of the heterogeneous nucleation process in the boiling of mixed refrigerants[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1149-1160.[10] He J., Liu J., Xu X. Analysis and experimental study of nucleation site densities in the boiling of mixed refrigerants[J]. International Journal of Heat and Mass Transfer, 2017, 105: 452-463.[11] Pang W., Liu J., Xu X. A strategy to optimize the charge amount of the mixed refrigerant for the Joule–Thomson cooler[J]. International Journal of Refrigeration, 2016, 69: 466-479.[12] Pang W., Liu J., He J., et al. Thermal performance of brazed plate heat exchangers for a mixed-refrigerant Joule–Thomson cooler[J]. International Journal of Refrigeration, 2016, 61: 37-54.[13] Lu X., Liu J., Xu X. Contact angle measurements of pure refrigerants[J]. International Journal of Heat and Mass Transfer, 2016, 102: 877-883.[14] Cao L., Liu J., Xu X. Robustness analysis of the mixed refrigerant composition employed in the single mixed refrigerant (SMR) liquefied natural gas (LNG) process[J]. Applied Thermal Engineering, 2016, 93: 1155-1163.[15] Cao L., Liu J., Li R., et al. Experimental study on the mixed refrigerant heat transfer performance in a plate-fin heat exchanger during a single-stage cryogenic cycle[J]. Applied Thermal Engineering, 2016, 93: 1074-1090.[16] 张发勇, 刘金平, 许雄文. 制冷工况下降膜冷凝器的制冷剂积存特性与传热性能[J]. 化工学报, 2015, 66(12): 5012-5021.[17] 许雄文, 刘金平, 吴秋丽. 工艺条件下(1+n)多股流一维传热组织原则优化[J]. 华南理工大学学报(自然科学版), 2015(08): 9-14+48.[18] Xu X., Liu J., Cao L. Mixed refrigerant composition shift due to throttle valves opening in auto cascade refrigeration system[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 199-204.[19] Xu X., Liu J., Cao L., et al. Automatically varying the composition of a mixed refrigerant solution for single mixed refrigerant LNG (liquefied natural gas) process at changing working conditions[J]. Energy, 2014, 64: 931-941.[20] Xu X., Liu J., Cao L. Optimization and analysis of mixed refrigerant composition for the PRICO natural gas liquefaction process[J]. Cryogenics, 2014, 59: 60-69.[21] Xu X., Liu J., Jiang C., et al. The correlation between mixed refrigerant composition and ambient conditions in the PRICO LNG process[J]. Applied Energy, 2013, 102: 1127-1136.[22] Xu X., Liu J., Cao L., et al. Local composition shift of mixed working fluid in gas–liquid flow with phase transition[J]. Applied Thermal Engineering, 2012, 39: 179-187.[23] 许雄文, 刘金平, 曹乐, et al. 非共沸混合工质在制冷循环中浓度偏移分析[J]. 化工学报, 2011(11): 3066-3072. 相关热点
最新收录
- 拉斐尔·纳达尔 05-29
- 安德烈·阿加西 05-29
- 罗杰·费德勒 05-29
- 樱坂凛花 (桜坂りんか R 05-27
- 优里なお(优里奈央,Yur 05-27
- 夕美紫苑(夕美しおん Sh 05-27
- 椎名美优(椎名みゆ) 05-27
- 就是阿朱啊 05-27
- 樱若菜(さくらわかな) 05-27
- 河西圣奈(河西聖奈) 05-27