热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
Michael
2023-05-06 11:39
  • Michael
  • Michael - 副教授-北京理工大学-数学与统计学院-个人资料

近期热点

资料介绍

个人简历


Educational Background
► 04/2005--10/2008, PhD in Mathematics, Mathematical Institute, University of Cologne, Germany. Supervisor: Prof. Peter Littelmann. Major: pure mathematics
► 10/2000--09/2004, Master in Mathematics, University of Wuppertal, Germany
Working Experience
► 04/2019--Present, Associate Professor, School of Mathematics and Statistics, Beijing Institute of Technology
► 09/2016--02/2019, Research Fellow in Mathematics, School of Mathematics and Statistics, University of Sydney, Australia. Supervisor: Prof. Andrew Mathas
► 04/2016--08/2016, Instructor in Mathematics, Mathematical Institute, University of Cologne, Germany.
► 10/2015--03/2016, Professor (fixed term) in Mathematics, Mathematical Institute, University of Bonn, Germany.
► 05/2015--09/2015, Instructor in Mathematics, Mathematical Institute, University of Cologne, Germany.
► 10/2014--04/2015, Postdoc in Mathematics, Mathematical Institute, University of Bonn, Germany. Supervisor: Prof. Catharina Stroppel
► 10/2013--09/2014, Instructor in Mathematics, Mathematical Institute, University of Cologne, Germany.
► 05/2009--09/2013, Postdoc in Mathematics, Mathematical Institute, University of Bonn, Germany. Supervisor: Prof. Catharina Stroppel

近期论文


Publications
[1] K. Coulembier and M. Ehrig: The periplectic Brauer algebra II: Decomposition multiplicities. J. Comb. Algebra, 2(1), 19-46, 2018
[2] M. Ehrig. MV-polytopes via affine buildings. Duke Math. J., 155(3), 433- 482, 2010.
[3] M. Ehrig and C. Stroppel. 2-row Springer fibres and Khovanov diagram algebras for type D. Canad. J. Math., 68(6), 1285-1333, 2016.
[4] M. Ehrig and C. Stroppel. Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians. Selecta Math. (N.S.), 22(3), 1455-1536, 2016.
[5] M. Ehrig and C. Stroppel. Koszul gradings on Brauer algebras. Int. Math. Res. Not. IMRN, (13), 3970-4011, 2016.
[6] M. Ehrig and C. Stroppel. Schur-Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra. Math. Z., 284(1-2), 595-613, 2016.
[7] M. Ehrig and C. Stroppel. On the category of finite-dimensional representations of OSp(r|2n): Part I. In Representation theory|current trends and perspectives, EMS Ser. Congr. Rep., pages 109-170. Eur. Math. Soc., Zurich, 2017.
[8] M. Ehrig and C. Stroppel. Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality. Adv. Math., 331, 58-142, 2018.
[9] M. Ehrig, C. Stroppel, and D. Tubbenhauer. The Blanchet-Khovanov algebras. In Categorification and higher representation theory, volume 683 of Contemp. Math., 183-226, 2017.
[10] M. Ehrig and D. Tubbenhauer. Algebraic properties of zig-zag algebras. Online published in Communications in Algebra, 2019.
[11] M. Ehrig and D. Tubbenhauer. Relative cellular algebras. online published in Trans. Groups, 2019.
[12] M. Ehrig, D. Tubbenhauer, and P. Wedrich. Functoriality of colored link homologies.
Proceedings of the LMS, 117(5), 996-1040, 2018.
[13] M. Ehrig, D. Tubbenhauer, and A. Wilbert. Singular TQFTs, foams and type D arc algebras. Documenta Math., 24, 1585-1655, 2019.

相关热点

扫码添加好友