热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
张世金
2023-05-06 10:26
  • 张世金
  • 张世金 - 讲师-北京航空航天大学-数学科学学院-个人资料

近期热点

资料介绍

个人简历


教育背景 \r
2001.9-2005.6 南开大学数学基地班 学士\r
2005.9-2010.6 南开大学陈省身数学研究所 博士 导师:方复全教授\r
2008.9-2010.3 UCSD(国家公派联合培养) 导师:倪磊(Lei Ni)教授\r
2010.7-2012.10 北京大学北京国际数学研究中心 博士后 合作导师:朱小华教授 \r
\r
工作简历 \r
2012.10-至今 北京航空航天大学 讲师\r
\r
所获奖励\r
2012年北航“蓝天新秀”

研究领域


""

近期论文


Some De Lellis-Topping type inequalities on the smooth metric measure space (with Meng Meng), Front. Math. China, 13(2018), 147-160.\r
\r
Liouville-type theorems on the complete gradient shrinking Ricci solitons (with Huabin Ge), Differential Geometry and its applications, 56(2018), 42-53.\r
\r
A gap theorem on complete shrinking gradient Ricci solitons, Proc. Amer. Math. Soc. 146(2018), 359-368.\r
\r
The Kaehler-Ricci flow on Fano bundles (with Xin Fu), Math. Z, 286(2017), 1605-1626.\r
\r
Volume growth of shrinking gradient Ricci-harmonic soliton (with Guoqiang Wu), Results ?Math. 72(2017), 205-223.\r
\r
Three-dimensional discrete curvature flows and discrete Einstein metrics (with Huabin Ge and Xu Xu), Pacific. Jour. Math., 287 (2017), No.1, 49-70.\r
\r
Remarks on shrinking gradient Kaehler-Ricci solitons with positive bisectional curvature (with Guoqiang Wu) , Comptes Rendus Mathematique, 354 (2016), 713-716.\r
\r
A theorem of Ambrose for Bakry-Emery Ricci tensor, Ann. Glob. Anal. Geom., Vol(45), 2014, 233-238.\r
\r
Perelman's entropy and Kaehler-Ricci flow on a Fano manifold(with Gang Tian, Zhenlei Zhang and Xiaohua Zhu), ?Trans. AMS., Vol(365), No. 12, 2013, 6669-6695.\r
\r
On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded from below, Acta Math. Sinica, English series, Vol(27), No. 5, 2011, 871-882.\r
\r
The convergence of the positive minimal fundamental solutions under Ricci flow, ?Proc. AMS, Vol(138), No. 3, 2010, 1121-1129.

相关热点

扫码添加好友