热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
戴蔚
2023-05-06 09:57
  • 戴蔚
  • 戴蔚 - 教授-北京航空航天大学-数学科学学院-个人资料

近期热点

资料介绍

个人简历


教育背景\r
2007年9月至2012年7月,中国科学院数学与系统科学研究院,(理学) 博士,导师:曹道民\r
2011年4月至2012年4月,加州大学伯克利分校数学系,公派留学访问,国外导师:Daniel Tataru\r
2003年9月至2007年6月,山东大学,数学学院,(理学) 学士\r
\r
工作简历\r
2023年2月至今,北京航空航天大学,数学科学学院,教授、博士生导师\r
2020年8月至2023年1月,北京航空航天大学,数学科学学院,副教授、博士生导师\r
2018年10月至2019年10月,LAGA,Institut Galilée,Université Sorbonne Paris Nord,公派访问学者,合作教授:Thomas Duyckaerts\r
2014年12月至2020年7月,北京航空航天大学,数学科学学院,讲师、硕士生导师\r
2012年10月至2014年11月,北京师范大学,数学科学学院,博士后,合作导师:陆国震\r
\r
所获奖励\r
获得国家优秀青年科学基金,主持,2022\r
校级优秀教学成果二等奖,“复变函数与积分变换教学改革与课程建设”,北航,参与,2020\r
青年拔尖人才支持计划(第九批),北航,2019\r
校级优秀本科毕业设计论文指导教师,北航,2018

研究领域


""

近期论文


Wei Dai; Guolin Qin; Classification of nonnegative classical solutions to third-order equations, Advances in Mathematics, 2018, 328: 822-857.\r
\r
Daomin Cao; Wei Dai; Guolin Qin; Super poly-harmonic properties for nonnegative solutions to equations involving higher-order fractional Laplacians and its applications, Transactions of the American Mathematical Society, 2021, 374 (7): 4781-4813.\r
\r
Wei Dai; Guolin Qin; Liouville type theorems for fractional and higher order H\\'{e}non-Hardy type equations via the method of scaling spheres, Int. Math. Res. Not. (IMRN), 2022, 70 pp, DOI: 10.1093/imrn/rnac079.\r
\r
Wei Dai; Guozhen Lu; L^p estimates for bilinear and multi-parameter Hilbert transforms, Analysis & PDE, 2015, 8(3): 675-712.\r
\r
Wei Dai; Guolin Qin; Liouville type theorem for critical order Hénon-Lane-Emden type equations on a half space and its applications, Journal of Functional Analysis, 2021, 281 (10): Paper No. 109227, 37 pp.\r
\r
Wei Dai; Zhao Liu; Guolin Qin; Classification of nonnegative solutions to static Schrodinger-Hartree-Maxwell type equations, SIAM Journal on Mathematical Analysis, 2021, 53(2): 1379-1410.\r
\r
Wei Dai; Shaolong Peng; Guolin Qin; Liouville type theorems, a priori estimates and existence of solutions for sub-critical order Lane-Emden-Hardy equations, Journal d'Analyse Mathématique, 2022, 146 (2): 673-718.\r
\r
Wei, Dai; Zhao, Liu; Classification of nonnegative solutions to static Schrodinger-Hartree and Schrodinger-Maxwell equations with combined nonlinearities, Calculus of Variations and Partial Differential Equations, 2019, 58(4): Paper No. 156, 24 pp.\r
\r
Wei Dai; Thomas Duyckaerts; Self-similar solutions of focusing semi-linear wave equations in $\\mathbb{R}^{N}$, Journal of Evolution Equations, 2021, 21 (4): 4703-4750.\r
\r
Wei Dai; Thomas Duyckaerts; Uniform a priori estimates for positive solutions of higher order Lane-Emden equations in R^n, Publicacions Matematiques, 2021, 65(1): 319-333.\r
\r
Wei Dai; Weihua Yang; Daomin Cao; Continuous dependence of Cauchy problem for nonlinear Schr?dinger equation in H^s, Journal of Differential Equations, 2013, 255(7): 2018-2064.\r
\r
Wei, Dai; Guolin, Qin; Dan, Wu; Direct Methods for Pseudo-relativistic Schr?dinger Operators, Journal of Geometric Analysis, 2021, 31 (6): 5555-5618.\r
\r
Wei Dai; Guolin Qin; Maximum principles and the method of moving planes for the uniformly elliptic nonlocal Bellman operator and applications, Annali di Matematica Pura ed Applicata, 2021, 200 (3): 1085-1134.\r
\r
Wei Dai; Jingze Fu; On properties of positive solutions to nonlinear tri-harmonic and bi-harmonic equations with negative exponents, Bulletin of Mathematical Sciences, 2022, 48 pp, DOI: 10.1142/S1664360722500072.\r
\r
Wei Dai; Nonexistence of positive solutions to $n$-th order equations in $\\mathbb{R}^{n}$, Bulletin des Sciences Mathématiques, 2022, 174: Paper No. 103072, 14 pp.\r
\r
Daomin Cao; Wei Dai; Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Royal Soc. Edinburgh - A: Mathematics, 2019, 149 (4): 979-994.\r
\r
Wei Dai; Yanqin Fang; Guolin Qin; Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes , Journal of Differential Equations, 2018, 265(5): 2044-2063.\r
\r
Wei Dai; Guozhen Lu; L^p estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France, 2015, 143(3): 567-597.\r
\r
Wei, Dai; Guolin, Qin; Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains, Journal of Differential Equations, 2020, 269(9): 7231-7252.\r
\r
Daomin Cao; Wei Dai; Yang Zhang; Existence and symmetry of solutions to 2-D Schr\\\

相关热点

扫码添加好友