高敬阳
近期热点
资料介绍
个人简历
高敬阳,博士,教授,博士生导师,计算机系主任。北京市教学名师、霍英东教育基金会第8届青年教师奖。 主编出版教材3部。教学课程 Teaching Courses课程名称 课程备注 程序设计基础 本科生 计算机科学导论 本科生 大学计算机(中国大学MOOC平台课程) 本科生 C语言程序设计(中国大学MOOC平台课程) 本科生 主要科研项目 Research Projects项目名称 项目来源 基于多检测理论融合的基因组结构变异综合检测方法 国家自然科学基金面上项目 基因组缺失变异特征增强表达及精准检测 北京市自然科学基金面上项目 基于深度学习及二代测序数据的肺癌驱动基因精准检测 北化-中日联合基金项目 主要成果、奖励 Main Achievements and Awards北京市教学名师霍英东教育基金会第8届青年教师奖近期论文
● Cai L, Wu YF, Gao JY*. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network. BMC BIOINFORMATICS, DEC 12 2019. 20(1),p665 ● Wu Zhongjia,Wu Yufeng, Gao Jingyang*. InvBFM:finding genomic inversions from high-throughput sequence data based on feature mining. BMC GENOMICS. MAR 5 2020,21(1):p173 ● Bai Ruofei, Gao Liwei, Ling Cheng, Gao Jingyang*. CnnSV-Typer: Calling of structural variation genotype based on CUDA acceleration. 21st IEEE International Conference on High Performance Computing and Communications, HPCC 2019, August 10-12, 2019. ● Xiaodong Zhang, Jingyang Gao*. Concod: Accurate Consensus-based Approach of Calling Deletions from High-throughput Sequencing Data. The 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen,China,Dec 15-18,2016.(CCF B类) ● Lei Cai, Jingyang Gao*. Concod: an effective integration framework of consensus-based calling deletions from next-generation sequencing data. International Journal of Data Mining and Bioinformatics (IJDMB), Vol. 17, No. 2, 2017,pp153-172. ● Jing Wang, Jingyang Gao*. Deletion genotype calling on the basis of sequence visualization and image classification. Int. J. Data Mining and Bioinformatics.2018, 20(2) ,pp: 109-122. ● Jing Wang, Jingyang Gao*. CNNdel: Calling Structural Variations on Low Coverage Data Based on Convolutional Neural Networks. BioMed Research International Volume 2017 (2017), Article ID 6375059, 8 pages. ● GUAN Rui, GAO Jing-yang*. Machine-learning-aided precise prediction of deletions with next-generation sequencing. Journal of Central South University. 2016.12.31,23(12):3239~3247. ● 高敬阳*.基于AdaBoost的基因组缺失变异综合检测策略. 东南大学学报(自然科学版),2014,44(5),pp924-928.(EI:201444132369). ● 张泽中,高敬阳*,吕纲,赵地.基于深度学习的胃癌病理图像分类方法. 计算机科学.2018,11,pp263-268.担任中国计算机学会高级会员、中国人工智能学会高级会员、中国计算机学会人工智能与模式识别专委会委员、中国计算机学会生物信息学专委会首批委员等。 相关热点