伊鸣
近期热点
资料介绍
个人简历
学术经历: 于北京大学医学部临床医学专业获医学学士学位,英国伦敦大学学院(University College London, UCL)解剖与发育生物学系神经科学专业获哲学博士学位(导师John O’Keefe教授,获2014年诺贝尔生理学或医学奖)。2012年2月入选北京大学青年百人计划,现为北京大学神经科学研究所研究员。 科研资助 2018年北京自然科学基金(5182013) 2015年国家重点基础研究发展计划(973计划)(2015CB554503) 2014年国家重点基础研究发展计划(973计划)青年科学家专题(2014CB548200) 2012年国家自然科学基金(31200835) 教学 本科生课程《高级神经生物学》:语言与认知 本科生课程《科研思维训练》:神经生物学 研究生课程《高级神经生物学》:脑的高级认知功能 研究生课程《神经科学进展》:空间认知研究进展 研究生课程《神经生物学实验》:清醒动物在体电生理记录的理论与实践 北京大学医学部教师教学发展中心培训导师 2014年中华医学会医学教育分会第四届医学(医药)院校青年教师教学基本功比赛特等奖,最受学生欢迎奖,最佳教案奖 2013年北京高校第八届青年教师教学基本功比赛一等奖,最受学生欢迎奖,最佳演示奖 2013年北京大学医学部教学优秀奖 2012年北京大学第十二届青年教师教学演示竞赛(医科类)一等奖 2012年北京大学基础医学院第十二届青年教师教学演示竞赛一等奖研究领域
研究方向:高等认知的神经网络机制 神经科学的终极目标是阐明精神和认知活动的生物学基础。针对这一问题,我们可以在多个层面进行研究(图)。其中,神经网络动力学是神经科学研究的前沿领域之一,在系统生物医学和转化医学方面都有重要意义。O’Keefe等三位科学家因在空间认知领域的贡献获2014年诺贝尔医学或生理学奖,他们在神经网络层面研究中显现出的创造性思维,是其获奖的最重要原因之一。 我们以清醒动物在体电生理记录、光/化学遗传学等神经网络技术为核心,辅以分子生物学、脑片膜片钳、行为学、脑电等其他技术,研究疼痛、情绪、记忆等认知过程的神经网络机制及其临床转化。具体工作主要从以下两方面开展: 海马回路的生理学与病理学海马(hippocampus)是最受关注的脑部核团之一,与前额叶皮层、杏仁核、下丘脑等多个脑区存在复杂的纤维投射,参与介导陈述性记忆等多种高级任职过程。我们近年研究发现,海马脑区及其回路在疼痛与情绪认知中同样发挥重要作用。目前,我们应用清醒动物在体电生理记录、光/化学遗传学、脑片膜片钳、分子生物学等多项技术,研究海马回路在认知、疼痛、情绪等多种行为中的作用。 Jiang Y, Shao S, Zhang Y, Zheng J, Chen X, Cui S, Liu FY, Wan Y, Yi M. Neural pathways in medial septal cholinergic modulation of chronic pain: distinct contribution of anterior cingulate cortex and ventral hippocampus. Pain. 2018. doi: 10.1097/j.pain.0000000000001240.Zheng J, Jiang YY, Xu LC, Ma LY, Liu FY, Cui S, Cai J, Liao FF, Wan Y, Yi M. Adult hippocampal neurogenesis along the dorsoventral axis contributes differentially to environmental enrichment combined with voluntary exercise in alleviating chronic inflammatory pain in mice. J Neurosci. 2017; 37(15):4145-4157. Liu Y, Lai S, Ma W, Ke W, Zhang C, Liu S, Zhang Y, Pei F, Li S, Yi M, Shu Y, Shang Y, Liang J, Huang Z. CDYL suppresses epileptogenesis in mice through repression of axonal Nav1.6 sodium channel expression. Nat Commun. 2017;8(1):355.Cacucci F *, Yi M *, Wills TJ, Chapman P, O'Keefe J. Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proc Natl Acad Sci U S A. 2008; 105(22): 7863-8.¨ 功能神经网络的电生理特征 神经元群构成不同的功能神经网络进而介导各类行为。我们应用在体电生理、光/化学遗传学等技术,研究默认模式网络、痛矩阵等功能神经网络的电生理特征及细胞学基础。以痛矩阵为例,疼痛包含感觉、情绪、认知等多个维度,分别由不同核团介导,是进行神经网络研究的理想模型。我们在模型动物和志愿者中,研究各功能神经网络的电生理特征、细胞机制及其临床转化应用。¨ Fan XC, Fu S, Liu FY, Cui S, Yi M, Wan Y. Hypersensitivity of prelimbic cortex neurons contributes to aggravated nociceptive responses in rats with experience of chronic inflammatory pain. Front Mol Neurosci. 2018. 11:85. Peng WW, Xia XL, Yi M, Huang G, Zhang ZG, Iannetti GD, Hu L. Brain oscillations reflecting pain-related behavior in freely moving rats. Pain. 2018. 159(1):106–118Li X, Zhao Z, Ma J, Cui S, Yi M, Guo H, Wan Y. Extracting neural oscillation signatures of laser-induced nociception in pain-related regions in rats. Front Neural Circuits. 2017;11:71. doi: 10.3389/fncir.2017.00071. Yi M, Zhang H. Nociceptive memory in the brain: cortical mechanisms of chronic pain. J Neurosci. 2011. 31:13343-13345. 核心技术 清醒动物在体电生理记录技术通过手术将微电极阵列埋置在动物特定脑区后,在动物清醒自由活动状态下进行行为学实验,同时记录各脑区的神经元动作电位和神经元群局部场电位。进而通过数学方法分析记录到的电信号频率、幅度、相位等特征,在神经网络层面研究脑功能特征。这项技术可以直接、长期、同步观察清醒动物特定核团神经元活动与行为相关性。我们将在体多通道电生理记录与3D打印技术结合应用,目前已实现在多达12个不同脑区中同步记录神经元电活动。 光/化学遗传学技术光遗传学与化学遗传学技术是神经科学前沿技术,通过光脉冲或特定药物精确调控特定脑区特定类型神经元活动模式,进而研究其对行为的影响。光遗传学技术首先通过转基因技术或病毒转染,使动物特定脑区特定类型神经元或神经回路表达兴奋性或抑制性光敏蛋白,进而通过光纤用激光或LED光脉冲人为地时空特异性控制光敏蛋白传输兴奋性的阳离子流或者抑制性的阴离子流,进而精确控制细胞或神经回路的活动状态。化学遗传学技术通过转基因技术或病毒转染,使动物特定脑区特定类型神经元表达专门设计的兴奋性或抑制性G蛋白偶联受体,进而局部或系统注射专门设计的激活此受体的药物控制相应细胞或神经回路的活动状态。其操作比光遗传学更简单,作用更持久。此外,分子生物学、钙成像、脑片膜片钳、动物行为学、高密度脑电等其他先进技术均有用。 相关热点