汤超
近期热点
资料介绍
个人简历
姓名汤超性别男所属院系前沿交叉学科研究院最高学位博士毕业学校芝加哥大学职务前沿交叉学科研究院执行院长本科生教学1整合科学讨论班本科生教学2系统生物学选讲本科生教学3生命科学第三次革命本科生教学4美国的科学与大学备注2015年 北京大学第二届“十佳导师”2002年 中国国家自然科学基金委员会“国家杰出青年基金(B类)”1997年 美国物理学会会士(Fellow)教育经历1986年 芝加哥大学 物理系 物理学 博士1981年 中国科学技术大学 力学系 学士学术成就2018年 理论与实验结合,解释了困扰生物学界70余年的关于细菌生长的一个经典问题2013年 与邓宏魁合作提出干细胞重编程的“跷跷板模型” 2009年 用理论与计算的方法研究生化适应性网络,找出了其中普适性的设计原理 2004年 将非线性科学的理论应用到生物调控网络的研究,提出了生物系统稳定性的理论解释 1996年 将统计物理思想引入蛋白质折叠理论,提出可设计性原理 1987年 提出自组织临界性的概念及理论,在非平衡统计物理与复杂系统方面开创了一个新领域近五年承担的主要项目2015年 《生物网络的可计算建模》,国家自然科学基金委员会(项目号:91430217)2014年 《基于蛋白质调控网络的系统生物学研究》首席科学家,国家重点基础研究发展计划(973发展计划)项目 (项目号:2015CB910300)推荐书目(1-5本)《爱因斯坦文集》(商务印书馆,许良英等编译),《物理定律的本性》(费曼Feynman著),《The Elements of Style》 (William Struck),《人类简史》(赫拉利Harari著),《莫泊桑短篇小说选》研究领域
主要研究方向1统计物理学 主要研究方向2物理生物学主要研究方向3非线性科学主要研究方向4系统生物学近期论文
论文及专著 M. Kohmoto, L. Kadanoff, and C. Tang, “Localization Problem in One Dimension: Mapping and Escape,” Phys. Rev. Lett. 50, 1870 (1983).L. Kadanoff and C. Tang, “Escape from Strange Repellers,” Proc. Natl. Acad. Sci. USA (Physics) 81, 1276 (1984).C. Tang, “Diffusion-Limited Aggregation and the Saffman-Taylor Problem,” Phys. Rev. A 31, 1977 (1985) (Rapid Communication).D. Bensimon, L. Kadanoff, S. Liang, B. Shraiman, and C. Tang, “Viscous Flows in Two Dimensions,” Rev. Mod. Phys. 58, 977 (1986).C. Tang and M. Kohmoto, “Global Scaling Properties of the Spectrum for a Quasiperiodic Schrödinger Equation,” Phys. Rev. B 34, 2041 (1986) (Rapid Communication).M. Kohmoto, B. Sutherland, and C. Tang, “Critical Wave Functions and a Cantor-Set Spectrum of a One-Dimensional Quasicrystal Model,” Phys. Rev. B 35, 1020 (1987).C. Tang, K. Wiesenfeld, P. Bak, S. Coppersmith, and P. Littlewood, “Phase Organization,” Phys. Rev. Lett. 58, 1161 (1987).P. Bak, C. Tang, and K. Wiesenfeld, “Self-Organized Criticality: An Explanation of 1/f Noise,” Phys. Rev. Lett. 59, 381 (1987).P. Bak, C. Tang, and K. Wiesenfeld, “Self-Organized Criticality,” Phys. Rev. A 38, 364 (1988).C. Tang and P. Bak, “Critical Exponents and Scaling Relations for Self-Organized Critical Phenomena,” Phys. Rev. Lett. 60, 2347 (1988).C. Tang and P. Bak, “Mean Field Theory of Self-Organized Critical Phenomena,” J. Stat. Phys. 51, 797 (1988).P. Bak, C. Tang, and K. Wiesenfeld, “Self-Organized Critical Phenomena,” in Directions in Chaos, vol. 2, edited by Hao Bai-Lin (World Scientific, Singapore, 1988).P. Bak, C. Tang, and K. Wiesenfeld, “Scale Invariant Spatial and Temporal Fluctuations in Complex Systems,” in Random Fluctuations and Pattern Growth: Experiments and Models, edited by H. E. Stanley and N. Ostrowsky (Kluwer Academic, Dordrecht, 1988).P. Bak, C. Tang, and K. Wiesenfeld, “Are Earthquakes, Fractals, and 1/f Noise Self-Organized Critical Phenomena,” in Cooperative Dynamics in Complex Physical Systems, edited by H. Takayama (Springer, Tokyo, 1988).P. Bak and C. Tang, “Self-Organized Criticality,” in Physics News in 1988, Physics Today January, S-27 (1989).K. Wiesenfeld, C. Tang, and P. Bak, “A Physicist's Sandbox,” J. Stat. Mech. 54, 1441 (1989).P. Bak and C. Tang, “Earthquakes as a Self-Organized Critical Phenomenon,” J. Goephys. Res. 94, No. B11, 15635 (1989).C. Tang, H. Nakanishi, and J. Langer, “Droplet Model for Autocorrelation Functions in an Ising Ferromagnet,” Phys. Rev. A 40, 995 (1989).C. Tang, S. Alexander, and R. Bruinsma, “Scaling Theory for the Growth of Amorphous Films,” Phys. Rev. Lett. 64, 772 (1990).C. Tang, “Self-Organized Critical Phenomena,” in Scaling in Disordered Materials: Fractal Structure and Dynamics, edited by J.P. Stokes, M.O. Robbins, and T.A. Witten (Materials Research Society, 1990).P. Bak, K. Chen, and C. Tang, “A Forest-Fire Model and Some Thoughts on Turbulence,” Phys. Lett. A 147, 297 (1990).J. Carlson, J. Langer, B. Shaw, and C. Tang, “Intrinsic Properties of a Burridge-Knopoff Model of an Earthquake Fault,” Phys. Rev. A 44, 884 (1991).J. Langer and C. Tang, “Rupture Propagation in a Model of an Earthquake Fault,” Phys. Rev. Lett. 67, 1043 (1991).C. Tang, “Earthquakes as a Complex Phenomenon,” in Modeling Complex Phenomena, edited by L. Lam and V. Naroditsky (Springer-Verlag, New York, 1992).C. Tang, “Self-Organized Criticality and the Bean Critical State,” Physica A 194, 315 (1993).C. Tang and S. Liang, “Patterns and Scaling properties in a Ballistic Deposition Model,” Phys. Rev. Lett. 71, 2769 (1993).C. Tang, S. Feng, and L. Golubovic, “Dynamics and Noise Spectra of a Driven Single Flux Line in Superconductors,” Phys. Rev. Lett. 72, 1264 (1994); ibid. 74, 3500(C) (1995).C. Tang, “Self-Organized Criticality: Sandpiles and Flux Lines,” in Proceedings of the Second International Conference on Computational Physics, edited by D.-Y. Li, D.-H. Feng, M. Strayer, and T.-Y. Zhang, (International Press, Cambridge, MA, 1995).A. Middleton and C. Tang, “Self-Organized Criticality in Non-Conserved Systems,” Phys. Rev. Lett. 74, 742 (1995).C. Denniston and C. Tang, “Dynamics of a Driven Single Flux Line in Superconductors,” Phys. Rev. B 51, 8457 (1995).C. Denniston and C. Tang, “Phases of Josephson Junction Ladders,” Phys. Rev. Lett. 75, 3930 (1995).X.S. Ling, H.J. Lezec, M.J. Higgins, J.S. Tsai, J. Fujita, H. Numata, Y. Nakamura, Y. Ochiai, Chao Tang, P.M. Chaikin, S. Bhattacharya. “Nature of Phase Transitions of Superconducting Wire Networks in a Magnetic Field,” Phys. Rev. Lett. 76, 2989 (1996); ibid. 77, 410(E) (1996).H. Li, R. Helling, C. Tang*, and N. Wingreen, “Emergence of Preferred Structures in a Simple Model of Protein Folding,” Science 273, 666 (1996).C. Tang, X.S. Ling, S. Bhattacharya, and P. Chaikin, “Peak Effect in Superconductors: Melting of Larkin Domains,” Europhys. Lett. 35, 597 (1996).H. Li, C. Tang, and N. Wingreen, “Nature of Driving force for Protein Folding -- A Result from Analyzing Statistical Potential,” Phys. Rev. Lett. 79, 765 (1997).C. Denniston and C. Tang, “Domain Walls and Phase Transitions in the Frustrated Two-Dimensional XY Model,” Phys. Rev. Lett. 79, 451 (1997).H. Li, C. Tang*, and N. Wingreen, “Are Protein Folds Atypical?” Proc. Natl. Acad. Sci. U.S.A. 95, 4987 (1998).C. Denniston and C. Tang, “Low Energy Excitations and Phase Transitions in the Frustrated Two-Dimensional XY Model,” Phys. Rev. B. 58, 6591 (1998).C. Tang, “Fractal Dimension of Julia Set for Non-analytic Maps”, J. Stat. Phys. 93, No. 3/4, 1001 (1998).R. Mélin, H. Li, N. Wingreen*, and C. Tang, “Designability, Thermodynamic Stability, and Dynamics in Protein Folding: a Lattice Model Study”, J. Chem. Phys. 110, 1252 (1999).C. Denniston and C. Tang, “Incommensurability in the Frustrated Two-Dimensional XY Model,” Phys. Rev. B. 60, 3163 (1999).S. Maslov, C. Tang, and Y.C. Zhang, “1/f Noise in Bak-Tang-Wiesenfeld Models on Narrow Stripes,” Phys. Rev. Lett. 83, 2449 (1999).C. Tang*, “Simple Models of the Protein Folding Problem,” Physica A 288, 31 (2000).T. Wang, J. Miller, N. Wingreen, C. Tang*, and K. Dill, “Symmetry and Designability for Lattice Protein Models,” J. Chem. Phys. 113, 8329 (2000).M. Kloster, S. Maslov, and C. Tang, “Exact Solution of Stochastic Directed Sandpile Model,” Phys. Rev. E, 63, 026111 (2001). R. Helling, H. Li, R. Mélin, J. Miller, N. Wingreen, C. Zeng, and C. Tang*, “The Designability of Protein Structures,” J. Mol. Graph. Model. 19, 157 (2001).H. Li, C. Tang, and N. Wingreen, “Designing Protein Structures,” in Phase Transitions and Self-Organization in Electronic and Molecular Networks, pp 441-445, edited by J.C. Philips and M.F. Thorpe (Kluwer Academic/Plenum Publishers, 2001).H. Cejtin, J. Edler, A. Gottlieb, R. Helling, H. Li, J. Philbin, N. Wingreen, and C. Tang*, “Fast Tree Search for Enumeration of a Lattice Model of Protein Folding,” J. Chem. Phys. 116, 352 (2002).E. Emberly, J. Miller, C. Zeng, N. Wingreen, and C. Tang*, “Identifying Proteins of High Designability via Surface-Exposure Patterns,” Proteins 47, 295 (2002).J. Miller, C. Zeng, N. Wingreen, and C. Tang*, “Emergence of highly-designable protein-backbone conformations in an off-lattice model,” Proteins 47, 506 (2002).E. Emberly, N. Wingreen, and C. Tang*, “Designability of -helical Proteins,” Proc. Natl. Acad. Sci. USA 99, 11163 (2002).H. Li, C. Tang*, N. Wingreen, “Designability of Protein Structures: A Lattice-Model Study using the Miyazawa-Jernigan Matrix,” Proteins 49, 403 (2002).M. Yahyanejad, M. Kardar, and C. Tang*, “Structure space of model proteins: a principle component analysis,” J. Chem. Phys. 118, 4277 (2003).E. Emberly, R. Mukhopadhyay, N. Wingreen, and C. Tang*, “Flexibility of -helices: Results of a statistical analysis of database protein structures,” J. Mol. Biol. 327, 229 (2003).J. Zhang, R. Chen, C. Tang, and J. Liang*, “Origin of scaling behavior of protein packing density: a sequential Monte Carlo study of compact long chain polymers,” J. Chem. Phys. 118, 6102 (2003).R. Mukhopadhyay, E. Emberly, C. Tang, and N. Wingreen, “Statistical mechanics of RNA folding: Importance of alphabet size,” Phys. Rev. E 68, 041904 (2003).N. Wingreen, H. Li, and C. Tang*, “Designability and Thermal Stability of Protein Structures,” Polymer 45, 699 (2004).M. Kloster and C. Tang, “Simulation and analysis of in vitro DNA evolution,” Phys. Rev. Lett. 92, 038101 (2004).E. Emberly, R. Mukhopadhyay, C. Tang, and N. Wingreen*, “Flexibility of -sheets: Principal component analysis of database protein structures,” Proteins 55, 91 (2004).F. Li, Y. Lu, T. Long, Q. Ouyang*, and C. Tang*, “The yeast cell-cycle network is robustly designed,” Proc. Natl. Acad. Sci. USA. 101, 4781 (2004).S. Moelbert, E. Emberly, and C. Tang*, “Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins,” Protein Science 13, 752 (2004).M. Kloster, C. Tang*, and N. Wingreen, “Finding regulatory modules through large scale gene expression data analysis,” Bioinformatics 21, 1172 (2005).W. Ma, C. Tang, and L. Lai*, “Specificity of trypsin and chymotrypsin: Loop motion controlled dynamic correlation as a determinant,” Biophys. J. 89, 1183 (2005).E. Kruus*, P. Thumfort, C. Tang, and N. Wingreen, “Gibbs sampling and helix-cap motifs,” Nucleic Acids Research, 33, 5343-5353 (2005).F. Li, Y. Lu, T. Long, Q. Ouyang, and C. Tang, “Global Dynamic Properties of Protein Networks,” in Frontiers and Prospects of Contemporary Applied Mathematics, edited by T. Li and P. Zhang (World Scientific, 2005).Y. Zhang, M. Qian*, Q. Ouyang*, M. Deng, F. Li, and C. Tang, “Stochastic model of yeast cell cycle network,” Physica D 219, 35 (2006).D. Shao, W. Zheng, Q. Ouyang*, and C. Tang*, \社会兼职北京大学定量生物学中心主任;北京大学-清华大学生命科学联合中心学术委员会主任;《定量生物学》杂志共同主编;粤港澳交叉科学中心主任;丹麦波尔研究所科学顾问委员会成员;美国国家科学基金会理论物理生物学中心科学顾问委员会成员 相关热点