热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
陆盈盈
2023-05-17 18:06
  • 陆盈盈
  • 陆盈盈 - 教授 博导-浙江大学-化学工程与生物工程学院-个人资料

近期热点

资料介绍

个人简历


2010年6月毕业于浙江大学化学工程与生物工程学院,获得学士学位;2014年6月获得美国康奈尔大学(Cornell University)博士学位;博士毕业后在康奈尔大学和斯坦福大学(Stanford University)从事能源材料领域博士后研究工作。2015年入选国家海外人才引进计划(青年项目);于2015年10月全职回浙江大学工作。

研究领域


"""""1. 电解质材料产品工程\r
2. 多功能离子液体\r
3. 无机有机纳米结构杂化物\r
4. 锂电池等能源化工材料\r
5. 高能量大功率储能器件\r
6. 电化学还原二氧化碳"

近期论文


Fan, L.; Liu, C.-Y.; Zhu, P.; Xia, C.; Zhang, X.; Wu, Z.-Y.; Lu, Y.; Senftle, T. P.; Wang, H., Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products. Joule 2022, 6 (1), 205-220.\r
\r
Mao, S.; Shen, Z.; Zhang, W.; Wu, Q.; Wang, Z.; Lu, Y., Outside-In Nanostructure Fabricated on LiCoO2 Surface for High-Voltage Lithium-Ion Batteries. Advances Science 2022, e2104841.\r
\r
Li, Y.; Wei, B.; Zhu, M.; Chen, J.; Jiang, Q.; Yang, B.; Hou, Y.; Lei, L.; Li, Z.; Zhang, R.; Lu, Y., Synergistic Effect of Atomically Dispersed Ni–Zn Pair Sites for Enhanced CO2 Electroreduction. Advanced Materials 2021, 33, 2102212.\r
\r
Wang, X.; Chen, M.; Li, S.; Zhao, C.; Zhang, W.; Shen, Z.; He, Y.; Feng, G.; Lu, Y., Inhibiting Dendrite Growth via Regulating the Electrified Interface for Fast-Charging Lithium Metal Anode. ACS Central Science 2021, 7 (12), 2029-2038.\r
\r
Zhang, W.; Zhao, Q.; Hou, Y.; Shen, Z.; Fan, L.; Zhou, S.; Lu, Y.; Archer, L. A., Dynamic interphase-mediated assembly for deep cycling metal batteries. Science Advances 2021, 7 (49), eabl3752.\r
\r
Li, S.; Zhang, S.; Chai, S.; Zang, X.; Cheng, C.; Ma, F.; Zhang, L.; Lu, Y., Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte. Energy Storage Materials 2021, 42, 628-635.\r
\r
Guo, J.; Zheng, J.; Zhang, W.; Lu, Y., Recent Advances of Composite Solid-State Electrolytes for Lithium-Based Batteries. Energy & Fuels 2021, 35 (14), 11118-11140.\r
\r
Shen, Z.; Zhang, W.; Mao, S.; Li, S.; Wang, X.; Lu, Y., Tailored Electrolytes Enabling Practical Lithium–Sulfur Full Batteries via Interfacial Protection. ACS Energy Letters 2021, 6 (8), 2673-2681.\r
\r
Wang, X.; Li, S.; Zhang, W.; Wang, D.; Shen, Z.; Zheng, J.; Zhuang, H. L.; He, Y.; Lu, Y., Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability. Nano Energy 2021, 89.\r
\r
Wang, X.; Wu, Q.; Li, S.; Tong, Z.; Wang, D.; Zhuang, H. L.; Wang, X.; Lu, Y., Lithium-Aluminum-Phosphate coating enables stable 4.6 V cycling performance of LiCoO2 at room temperature and beyond. Energy Storage Materials 2021, 37, 67-76.\r
\r
Mao, S.; Wu, Q.; Ma, F.; Zhao, Y.; Wu, T.; Lu, Y., Advanced liquid electrolytes enable practical applications of high-voltage lithium-metal full batteries. Chemical Communication 2021, 57 (7), 840-858.\r
\r
Li, S.; Liu, Q.; Zhang, W.; Fan, L.; Wang, X.; Wang, X.; Shen, Z.; Zang, X.; Zhao, Y.; Ma, F.; Lu, Y., High-Efficacy and Polymeric Solid-Electrolyte Interphase for Closely Packed Li Electrodeposition. Advanced Science 2021, 8 (6), 2003240. \r
\r
Shen, Z.; Zhang, W.; Li, S.; Mao, S.; Wang, X.; Chen, F.; Lu, Y., Tuning the Interfacial Electronic Conductivity by Artificial Electron Tunneling Barriers for Practical Lithium Metal Batteries. Nano Letters 2020, 20 (9), 6606-6613.\r
\r
Li, S.; Zhang, W.; Wu, Q.; Fan, L.; Wang, X.; Wang, X.; Shen, Z.; He, Y.; Lu, Y., Synergistic Dual-Additive Electrolyte Enables Practical Lithium-Metal Batteries. Angewandte Chemie International Edition 2020, 59 (35), 14935-14941.\r
\r
Zhang, W.; Shen, Z.; Li, S.; Fan, L.; Wang, X.; Chen, F.; Zang, X.; Wu, T.; Ma, F.; Lu, Y., Engineering Wavy‐Nanostructured Anode Interphases with Fast Ion Transfer Kinetics: Toward Practical Li‐Metal Full Batteries. Advanced Functional Materials 2020, 30 (39).\r
\r
Fan, L.; Xia, C.; Zhu, P.; Lu, Y.; Wang, H., Electrochemical CO 2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nature Communications 2020, 11 (1), 1-9.\r
\r
Zhang, W.; Wu, Q.; Huang, J.; Fan, L.; Shen, Z.; He, Y.; Feng, Q.; Zhu, G.; Lu, Y., Colossal Granular Lithium Deposits Enabled by the Grain‐Coarsening Effect for High‐Efficiency Lithium Metal Full Batteries. Advanced Materials 2020, 2001740.\r
\r
Wang, X.; Zhang, W.; Wang, D.; Zhuang, H. L.; Li, S.; Fan, L.; Wang, X.; He, Y.; Lu, Y., Ionic liquid-reinforced carbon nanofiber matrix enabled lean-electrolyte Li-S batteries via electrostatic attraction. Energy Storage Materials 2020, 26, 378-384.\r
\r
Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y., Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Science Advances 2020, 6 (8), eaay3111.\r
\r
Xu, Q.; Yang, X.; Rao, M.; Lin, D.; Yan, K.; Du, R.; Xu, J.; Zhang, Y.; Ye, D.; Yang, S., High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework. Energy Storage Materials 2020, 26, 73-82.

相关热点

扫码添加好友