邓晓刚
近期热点
资料介绍
个人简历
教育背景2002—2008 中国石油大学(华东) 信息与控制工程学院获工学博士学位1998—2002 石油大学(华东) 自动化系获学士学位工作背景2011.1-至今, 中国石油大学(华东), 信息与控制工程学院, 副教授2008.1-2010.12, 中国石油大学(华东), 信息与控制工程学院, 讲师2015.11-2016.10, 英国南安普顿大学, 电子与计算机科学系, 访问学者研究领域
工业过程监控与故障诊断技术工业过程质量监控技术控制系统性能评价技术机器学习方法在工业数据分析中的应用近期论文
[1] Deng Xiaogang, Tian Xuemin, Chen Sheng, Harris C J. Nonlinear process fault diagnosis based on serial principal component analysis. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(3): 560-572. (SCI一区期刊)[2] Deng Xiaogang, Tian Xuemin, Chen Sheng, Harris C J. Deep principal component analysis based on layerwise feature extraction and its application to nonlinear process monitoring. IEEE Transactions on Control System Technology, 2018, pp(99): 1-15.(SCI二区期刊)[3] Deng Xiaogang, Deng Jiawei. Incipient fault detection for chemical processes using two-dimensional weighted SLKPCA. Industrial & Engineering Chemistry Research, 2019, 58(6): 2280-2295.(SCI二区期刊)[4] Deng Xiaogang, Wang Lei. Modified kernel principal component analysis using double-weighted local outlier factor and its application to nonlinear process monitoring. ISA Transactions, 2018, 72: 218-228 (SCI二区期刊)[5] Xu Ying, Deng Xiaogang. Fault detection of multimode non-Gaussian dynamic process using dynamic Bayesian independent component analysis. Neurocomputing, 2016, 200: 70-79. (SCI二区期刊)[6] Zhang Hanyuan, Tian Xuemin, Deng Xiaogang, Cao Yuping. Multiphase batch process with transitions monitoring based on global preserving statistics slow feature analysis. NEUROCOMPUTING, 2018, 293: 64-86 (SCI二区期刊)[7] Zhang Hanyuan, Tian Xuemin, Deng Xiaogang, Cao Yuping. Batch process fault detection and identification based on discriminant global preserving kernel slow feature analysis. ISA Transactions, 2018, 79: 108-126 (SCI二区期刊)[8] Deng Xiaogang,Zhong Na,Wang Lei. Nonlinear multimode industrial process fault detection using modified kernel principal component analysis. IEEE Access, 2017, 5: 23121-23132. (SCI二区期刊)[9] Cao Yuping, Hu Yongping, Deng Xiaogang, Tian Xuemin. Quality-relevant batch process fault detection using a multiway multi-subspace CVA method. IEEE Access, 2017, 5: 23256-23265 (SCI二区期刊)[10] Deng Xiaogang, Tian Xuemin, Chen Sheng, Harris C J. Fault discriminant enhanced kernel principal component analysis incorporating prior fault information for monitoring nonlinear processes. Chemometrics and Intelligent Laboratory Systems, 2017, 162: 21-34 (SCI三区期刊)[11] Zhong Na, Deng Xiaogang. Multimode non‐Gaussian process monitoring based on local entropy independent component analysis. The Canadian Journal of Chemical Engineering, 2017, 95(2): 319-330 (SCI四区期刊)[12] Wang Lei, Deng Xiaogang, Cao Yuping. Multimode complex process monitoring using double-level local information based local outlier factor method. Journal of Chemometrics, 2018, 32(10): 1-21 (SCI四区期刊)[13] Deng Xiaogang, Tian Xuemin. Entropy principal component analysis and its application to nonlinear chemical process fault diagnosis. Asian-Pacific Journal of Chemical Engineering, 2014, 9(5): 696–706 (SCI四区期刊)[14] Deng Xiaogang, Tian Xuemin. Multimode Process Fault Detection Using Local Neighborhood Similarity Analysis. Chinese Journal of Chemical Engineering,2014, 22(11-12): 1260-1267 (SCI四区期刊)[15] Zhang Ni, Tian Xuemin, Cai Lianfang, Deng Xiaogang. Process fault detection based on dynamic kernel slow feature analysis. Computers & Electrical Engineering, 2015, 41:9-17 (SCI四区期刊)[16] Zhang Hanyuan, Tian Xuemin, Deng Xiaogang, Cai Lianfang. A local and global statistics pattern analysis method and its application to process identification. Chinese Journal of Chemical Engineering, 2015, 23(11): 1782-1792 (SCI四区期刊)[17] Deng Xiaogang, Tian Xuemin. Sparse Kernel Locality Preserving Projection and Its Application in Nonlinear Process Fault Detection. Chinese Journal of Chemical Engineering, 2013, 21(2), 163-170 (SCI四区期刊)[18] Deng Xiaogang, Tian Xuemin, Chen Sheng. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis. Chemometrics and Intelligent Laboratory Systems, 127(2013):195-209 (SCI二区期刊)[19] Deng Xiaogang, Tian Xuemin. Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor. Neurocomputing, 2013, 121:298-308 (SCI三区期刊) 相关热点
最新收录
- 吉高宁宁(吉高寧々 Nene 06-25
- 水咲优美(水咲優美) 06-25
- 三月光(三月ひかる) 06-21
- 澪川遥(澪川はるか) 06-21
- 冈本莉里 岡本莉里 (おか 06-21
- 宗像丽奈(宗像れな) 06-21
- 温碧霞 06-21
- 舒淇 06-21
- 叶玉卿 06-21
- 叶子楣 06-21