陈正
近期热点
资料介绍
个人简历
陈正,就职于中国矿业大学材料与物理学院,1980年12月生,山东枣庄人,教授,博士生导师,院长助理,新金属结构材料及成形团队负责人。主持国家自然基金面上项目、青年项目、江苏省自然基金面上项目、中国博士后基金项目等项目10余项,参与国家重点研发、省重点研发、国家自然基金重大项目、面上项目多项;入选中国矿业大学第三批起航计划、第九批青年骨干教师和青年学术带头人,获得江苏省“双创计划”人才项目支持。在Acta Mater.、Scripta Mater.、J. All. Compd.、Mater. Sci. Eng. A.等金属材料领域国际知名期刊发表SCI论文70余篇,出版英文专著1部。获得教育部自然科学一等奖、陕西省高校科技一等奖、江苏省研究生教学成果二等奖等多项。主讲材料工程基础、现代凝固技术基础、先进材料成型技术及理论等本科及研究生课程,获中国矿业大学教学成果一等奖1项,主编教材1部。指导本科生参加国家大学生创新计划、材料设计大赛项目、江苏省创新创业大赛并多次获奖,所指导学生中80%获得创新硕士奖学金。求学与工作经历2004年7月毕业于山东理工大学,获学士学位;2009年10月毕业于西北工业大学凝固技术国家重点实验室,获工学博士学位,师从中科院周尧和院士;2009年12月至今在中国矿业大学材料学院工作;2016年3月-2017年3月于宾夕法尼亚州立大学访问研究。代表性科研项目1.陈正,基于高熵晶界修饰热-动力学的纳米晶高温稳定化研究, 国家自然科学基金面上项目(51771226),2018.1-2021.12.2.陈正,高稳定Fe基纳米晶的可控制备及其热稳定机制研究,国家自然科学基金项目(51101169),2012.1-2014.12.3.陈正,高性能纳米结构材料一体化设计及溶质共偏聚机理研究,江苏省自然科学基金(BK20141126),2014.7-2017.6.4.陈正,设计思维驱动下的新工科人才培养模式匹配结构研究,江苏教育科学“十三五”规划重点课题(6V184039),2018.07-2020.7.5.陈正,高压多路阀设计制造关键共性技术研究,国家重点研发项目,2019.7-2022.6.6.陈正,面向突变截面/复杂表面机械零件超音速喷涂WC涂层增材制造关键技术,江苏省重点研发项目(BE2018061),2018.9-2021.8.7.陈正,多元合金纳米晶稳定化中晶界共偏析热-动力学研究,国家重点实验室开放课题(SKLSP201818),2018.6-2020.5.8.陈正,高熵合金耦合强化作用控制及纳米转变机理研究,学科前沿方向研究专项(2015XKQY01),2015-20189.陈正,江苏省博士后科学基金,1401052B,弱偏析纳米合金的高温稳定性设计及溶质共偏聚机理研究,项目主持人,3万元,2014.7-2016.610. 陈正,高稳定块体Fe基纳米晶的可控制备及其热稳定机制研究,中国博士后科学基金一等(2013M540475),2013.10-2015.10.11.陈正,纳米多元单相合金中溶质共偏聚及与晶界交互机理研究2014QNA07,10万, 2014-09-01-2017-9-01,中央高校科研业务费12.陈正,中国矿业大学青年科技基金(2010QNA06)“纳米Fe基合金的极端非平衡凝固及热稳定性研究”,2010.9~2013.913.陈正,高熵合金耦合强化作用控制及纳米转变机理研究, 中国矿业大学学科前沿专项基金,2015.9~2018.9, 项目主持人14.陈正,西北工业大学开放课题(SKLSP201119),纳米Fe基合金的极端非平衡凝固及热稳定性研究,2011.01-2013.1215.陈正,金属基碳化物材料的矿山机械耐磨损抗腐蚀零部件研究,中国矿业大学盱眙矿山装备与材料研发中心创新基金,CXJJ20130516.陈正,高性能钢基金属陶瓷螺杆制造技术,江苏省科技创新与成果转化(重大科技支撑与自主创新)专项引导资金,BY2012083代表性专利1.陈正等,负载CoCr(Mn-Al)FeNi 高熵合金的纳米颗粒催化剂及其制备方法和应用,国家发明专利,201910366879.4. (已授权)2.陈正等,一种高熵晶界修饰的纳米晶合金粉末及其制备方法,国家发明专利,201910349303.7. (已授权)3.陈正等,一种镍铬-金刚石合金复合粉末及其制备方法和用途国家发明专利201910428501.24.陈正等,一种负载CoCrCuFeNi高熵合金的纳米颗粒活性炭及其制备方法和应用,国家发明专利,201910366647.95.陈正等,高铬铸铁耐磨涂层的选择性堆焊方法及装置,国家发明专利,201910788474.X.6.陈正等,一种镍钼铁铬-金刚石合金复合粉末及其制备方法和用途,国家发明专利,201910428525.8.7.陈正等,一种铌合金表面高温耐磨涂层及其制备方法,国家发明专利,ZL201610905438.3.(已授权)8.陈正等,一种塑料成型机机筒的制造方法,国家发明专利,ZL201710010579.3.(已授权)9.陈正等,一种螺杆及其制备方法,国家发明专利,ZL201710010580.6.(已授权)10.陈正等,一种耐磨损传送辊制造方法,国家发明专利ZL201410634749.1(已授权)获奖情况1. 陈正等,金属材料非平衡相变的热-动力学协同效应与调控,教育部自然科学奖,2019,一等.2. 陈正等,行业特色高校新兴学科研究生“四体两翼两融合”培养模式探索与实践,研究生教学成果奖,江苏省教育厅,2019,二等.3. 陈正等,非平衡金属材料固态相变动力学理论及应用研究,陕西高等学校科学技术奖,2017,一等.4. 陈正等,激光氮化与熔覆装备及关键技术,徐州市科技奖,2018,二等奖.5. 陈正等,材料专业“双创”实践能力“学训赛交融递进式”培养模式研究,中国矿业大学校教学成果奖,2017,一等。6. 陈正等,材料专业“双创”实践能力“学训赛”交融培养模式研究与实践,全国煤炭行业教育教学成果奖奖,2017,三等.7. 陈正(学生张跃、陈强等),中国大学生高分子材料设计大赛,优秀指导教师, 2015,三等.8. 陈正,材料学院讲课比赛二等奖,2014.9. 陈正(学生梁涛等),江苏省大学生创新创业大赛优秀论文奖,优秀指导教师,2014.10. 陈正,校优秀班主任,2013.11. 陈正,年度考核优秀2013/2014/2018/2019.12. 刘雨雨、梁涛、陈强、王尚等校创新硕士。代表性教学成果承担教学项目[1] 陈正,《材料工程基础》课程教学与实践教学的整合与优化,校教学改革青年项目,2012-2015。[2] 陈正,2017YB38,专业认证导向的材料连接成型课组的构建与实践,校教学改革一般项目2017-2020。[3] 陈正,2017YB38,基于ESI指标体系的研究生创新能力提升新模式的研究与实践,研究生教改项目,2015.5-2017.5.[4] 陈正, “强本拓新”背景下研究生拓新交叉能力提升新模式的研究与实践,校研究生教改项目2019-2021[5] 陈正,以能力培养为导向,工程实例为载体的《现代凝固技术》课程教学模式设计,校教学改革青年项目,2018-2020[6] 陈正,“双一流”背景下非一流学科的青年教师与研究生协同发展模式探讨校教学改革一般项目2017-2018[7] 陈正,《现代焊接设备及其自动化》“课程思政”示范项目2019-2021主编教材[1] 陈正、樊宇、王延庆,材料成型专业实践认识,2016,中国矿业大学出版社.教学论文[1] 论高等工程教育中人文素养的培育,教育教学研究/2018.3[2] 研究生拓新交叉能力提升模式的研究与实践,教育教学研究/2019.10[3] 专业认证导向的材料连接成型课组的构建与实践,教育教学研究/2019.2[4] ESI指标体系下研究生创新能力提升模式的研究与实践,教育教学研究/2016.1[5] 课堂教学与实践教学的优化整合在材料工程基础课程中的应用,高等教育研究/2013.1[6] 现代凝固技术课程中模块化教学的改革与应用,教育教学研究/2014.6[7] “材料工程基础”课堂教学与实践教学的优化整合,教育教学研究/2014.5[8]以创新性案例教学推动大学课堂教学模式革新,教育教学研究/2019.1[9]工程教育专业认证背景下创新性案例教学的实践路径探析,教育教学论坛杂志社/2019接收[10] 理工科专业基础课程中的思政教育探索与实践,西安航空学院学报/2018.6[11] 陈正、沈承金、欧雪梅等,课堂教学与实践教学的优化整合在材料工程基础课程中的应用,高等教育研究,1期(2013)36.新金属结构材料及成形团队介绍新金属结构材料及成形团队成立于2019年,负责人是陈正老师,团队共由6位教师组成,孙智、陈正、樊宇、徐杰、张金勇、张平,其中教授2人,副教授2人,讲师2人,具有海外留学或学习经历的5人。团队主要从事与先进金属结构材料的研发、成型与设计相关的非平衡凝固及计算,3D打印及焊接技术、金属结构材料有限元模拟、钛合金非平衡相变及设计、材料表面改性、材料失效分析等相关研究,获得教育部自然一等奖等各级各类奖励30余项,在Acta Mater、Mater Res L等顶级期刊发表高水平论文300余篇,主持国家重点研发项目、国家自然基金项目、企业委托项目等60余项,团队累计研发经费达千万元。研究领域
主要从事非平衡相变热-动力学,高稳定新型纳米结构材料形成与设计,非晶、高熵等亚稳新材料设计及功能性,特种铸造工艺及模拟研究。""近期论文
[1]Z.Chen,F.Liu,X.Q.Yang,C.J.Shen,A thermokinetic description of nanoscale grain growth:Analysis of the activation energy effect,Acta Materialia 60(2012)4833–4844.(金属顶级期刊)[2]Z.Chen,F.Liu,H.F.Wang,W.Yang,G.C.Yang,Y.H.Zhou,A thermokinetic description for grain growth in nanocrystalline materials.Acta Materialia,2009,57(5):1466~1475.(金属顶级期刊)[3]Zheng Chen,Rapid solidification and related solid-state grain growth phenomena Lap LAMBERT Academic Publishing,2015.978-3-659-70614-1.(英文专著)[4]J.Y.Zhang,F.Sun,Z.Chen,Y.Yang,B.L.Shen,J.Li,Strong and ductile beta Ti–18Zr–13Mo alloy with multimodal twinning,Materials Research Letters,7(6)(2019)251-257.(金属顶级期刊)[5]S.Wang,Z.Chen,P.Zhang,K.Zhang,C.L.Chen,B.L.Shen,Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys,Vacuum 163(2019)263–268.[6]L.C.Feng,Z.Chen,Y.Fan,J.Y.Zhang,B.L.Shen,Relation between undercooled solidification and solid-state grain growth accompanying dynamic segregation,Vacuum,161(2019)71-80.[7]Y.Y.Liu,Z.Chen,J.C.Shi,Z.Y.Wang,J.Y.Zhang,The effect of Al content on microstructures and comprehensive properties in AlxCoCrCuFeNi high entropy alloys,Vacuum 161(2019)143-149.[8]S.Wang,Z.Chen,L.C.Feng,Y.Y.Liu,P.Zhang,Y.Z.He,Q.Q.Meng,J.Y.Zhang,Nano-phase formation accompanying phase separation in undercooled CoCrCuFeNi-3 at.%Sn high entropy alloy,Materials Characterization,144(2018)516-521.[9]Y.Zhang,Z.Chen,D.D.Cao,J.Y.Zhang,P.Zhang et al.Concurrence of spinodal decomposition and nano-phase precipitation in a multi-component AlCoCrCuFeNi high-entropy alloy.J Mater Res Technol.2018.https://doi.org/10.1016/j.jmrt.2018.04.020.[10]Z.Chen,Y.Zhang,S.Wang,J.Y.Zhang,P.Zhang,Microstructure and mechanical properties of undercooled Fe80C5Si10B5 eutectic alloy,Journal of Alloys and Compounds 747(2018)846-853.[11]J.Y.Zhang,J.S.Li,Z.Chen,Q.K.Meng,F.Sun,B.L.Shen,Microstructural evolution of a ductile metastable b titanium alloy with combined TRIP/TWIP effects,Journal of Alloys and Compounds 699(2017)775-782.[12]Z.Chen,T.Liang,Y.Zhang,L.C.Feng,X.Q.Yang,Y.Fan,TEM investigations of recrystallization in rapidly solidified Ni-Fe-Pb ternary alloy,Materials Characterization,127(2017)73–76.[13]Z.Chen,Y.Y.Tang,Q.Tao,Q.Chen,T.Liang,The mechanism of grain growth and thermal stability in Ni-1 at.%Pb alloy,Journal of Alloys and Compounds,662(2016)628-633.[14]Z.Chen,Q.Chen,C.J.Shen,F.Liu,Grain growth and thermal stability accompanying recrystallization in undercooled Ni-3at.%Sn alloy,Journal of Alloys and Compounds,646(2015)983-989.[15]R.X.Cui,Z.Chen,Y.Q.Wang,Y.Fan,F.Liu,C.H.Zhang,Analysis of activation energy evolution in thermo-kinetic process of nano-scale grain growth,Journal of Alloys and Compounds 646(2015)412-416.[16]Q.Chen,Z.Chen,F.Liu,R.X.Cui,T.Liang,The investigation of recrystallization developed in the largely undercooled Ni–3 at.%Sn alloy,Journal of Alloys and Compounds,638(25)(2015)109–114.[17]Z.Chen,X.Q.Yang,F.Liu,R.X.Cui,C.H.Zhang,Grain growth and thermal stability in nanocrystalline Fe-B alloys prepared by melt spinning,International Journal of Materials Research,2015,106(5)488-493.[18]Z.Chen,Q.Chen,F.Liu,X.Q.Yang,Y.Fan,C.H.Zhang,A.M.Liu,The influence of solid-state grain growth mechanism on the microstructure evolution in undercooled Ni-10at.%Fe alloy,Journal of Alloys and Compounds,622(2015)1086–1092.[19]Z.Chen,Y.N.Yang,et al,Recalescence effect simulation and microstructure evolution of undercooled Fe82B17Si1 alloy,Acta Metallurgica Sinica,50(7)(2014)795-801.[20]Z.Chen,Y.Y.Tang,Q.Chen,R.X.Cui,F.Liu,Z.H.Zhang,The interrelated effect of initial melt undercooling,solute trapping and solute drag on the grain growth mechanism of as-solidified Ni-B alloys,Journal of Alloys and Compounds,610(2014)561-566[21]Tao Liang,Zheng Chen,Xiaoqin Yang,Ning Liu,Yanan Yang,Chenlong Duan,Yuemin Zhao,Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy,International Journal of Materials Research,105(2014)E 854-860.[22]Z.Chen,F.Liu,X.Q.Yang,C.J.Shen,Y.M.Zhao,A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition,Journal of Alloys and Compounds,608(2014)338–342[23]Z.Chen,F.Liu,X.Q.Yang,Y.Z.Chen,C.L.Yang,G.C.Yang,Y.H.Zhou,The interrelated effect of activation energy and grain boundary energy on grain growth in nanocrystalline materials,International Journal of Materials Research(2013)104(9);1–6.[24]Yang,Xiaoqin;Xu,Shaoping;Chen,Zheng;Liu,Jiongtian Improved nickel-olivine catalysts with high coking resistance and regeneration ability for the steam reforming of benzene REACTION KINETICS MECHANISMS AND CATALYSIS,108(2),pp 459-472,2013/4.[25]Zheng Chen,Feng Liu,Xiaoqin Yang,Yu Fan,Chengjin Shen,Analysis of grain growth process in melt spun Fe–B alloys under the initial saturated grain boundary segregation condition,Journal of Alloys and Compounds(2012)510;46–53.[26]Zheng Chen,Feng Liu,Xiaoqin Yang,Chengjin Shen,Yu Fan,Analysis of controlled-mechanism of grain growth in undercooled Fe-Cu alloy,Journal of Alloys and Compounds(2011)509;7109–7115.[27]Zheng Chen,Feng Liu,Xiaoqin Yang,Ning Liu,Chengjin Shen,The effect of non-equilibriumδ/γtransition on the formation of metastable“dendrite core”in undercooled Fe–Cu alloy,Journal of Crystal Growth(2012)354;174–180.[28]Z.Chen,F.Liu,K.Zhang,Y.Z.Ma,G.C.Yang,Y.H.Zhou,Description of grain growth in metastable materials prepared by non-equilibrium solidification.Journal of Crystal Growth,2010,313:81~93.[29]Zheng Chen,Feng Liu and Chengjin Shen,A physical explanation of plateau in velocity vs.undercooling curve using a undercooled dendrite growth model,Advanced Materials Research 189-193(2011)3815-3818[30]Zheng Chen,Feng Liu,Chengjin Shen,Yu Fan,Comparison between kinetic and thermodynamic effects on grain growth in nano-scale materials,Advanced Materials Research 233-235(2011)2439-2442[31]*Fan,Yu,Shipway,Philip,Tansley,Geoff,Chen,Zheng Study of effect on tensile stress test from distortion of fibre laser welded Ti6Al4V using FEA International Conference on Advanced Design and Manufacturing Engineering(ADME 2011),2011/9/16-2011/9/18,pp 1889-1894,Guangzhou,PEOPLES R CHINA,2011.[32]Z.Chen,F.Liu,K.Zhang,Y.Z.Ma,G.C.Yang,Y.H.Zhou,Description of grain growth in metastable materials prepared by non-equilibrium solidification.Journal of Crystal Growth,2010,313:81~93.(SCI:2010695LV EI:11664044)IF:1.534[33]Z.Chen,H.F.Wang,F.Liu,W.Yang,Effect of nonlinear liquidus and solidus on the dendrite growth in bulk undercooled melts.Transactions of Nonferrous Metals Society of China,2010,20,490~494.[34]X.Q.Yang,Z.Chen,W.Yang,Analysis of thermal stability after occurrence of absolute solute trapping in undercooled Co-Cu alloy,International Journal of Materials Research(2013)104;783–788.(SCI,EI)[35]K.Zhang,Z.Chen,F.Liu,C.L.Yang,Thermodynamic state and kinetic process,analysis of grain boundary excess in nano-scale grain growth.J.Alloys and Compounds,2010,501:L4~L7.IF:2.135,SCI,EI.[36]N.Liu,F.Liu,W.Yang,Z.Chen,G.C.Yang,Movement of minor phase in undercooled immiscible Fe–Co–Cu alloys,Journal of Alloys and Compounds 551(2013)323–326,SCI,EI.[37]N.Liu,F.Liu,Z.Chen,W.Yang,G.C.Liquid-phase Separation in Rapid Solidification of Undercooled Fe-Co-Cu Melts,J.Mater.Sci.Technol.2012,28(7),622-625.SCI,EI.[38]Z.Chen,F.Liu,H.F.Wang,W.Yang,G.C.Yang,Y.H.Zhou,A thermokinetic description for grain growth in nanocrystalline materials.Acta Materialia,2009,57(5):1466~1475.IF:3.729[39]Z.Chen,F.Liu,W.Yang,H.F.Wang,G.C.Yang,Y.H.Zhou,Influence of grain boundary energy on the grain size evolution in nanocrystalline materials.Journal of Alloys and Compounds,2009,475:893~897.IF:2.135[40]Z.Chen,F.Liu,H.F.Wang,W.Yang,G.C.Yang,Y.H.Zhou,Formation of single-phase supersaturated solid solution upon solidification of highly undercooled Fe-Cu immiscible system.Journal of Crystal Growth,2008,310:5385~5391.IF:1.534[41]Z.Chen,F.Liu,H.F.Wang,G.C.Yang,Y.H.Zhou,The effect of kinetics on the stability under non-equilibrium condition.Materials Science and Engineering A,2006,433:182~189.IF:1.9[42]Z.Chen,F.Liu,G.C.Yang,Y.H.Zhou,Influence of grain boundary energy on the grain size evolution in nanocrystalline materials.Journal of Physics:Conference Series,2009,152:012086.[43]F.Liu,Z.Chen,H.F.Wang,C.L.Yang,W.Yang,G.C.Yang,Thermodynamics of nano-scale grain growth.Materials Science and Engineering A,2007,457:13~17.[44]H.F.Wang,F.Liu,Z.Chen,G.C.Yang,Y.H.Zhou,Analysis of non-equilibrium dendrite growth in bulk undercooled alloy melt,model and application,Acta Materialia,2007,55:497~506.[45]H.F.Wang,F.Liu,Z.Chen,W.Yang,G.C.Yang,Y.H.Zhou,Effect of non-linear liquidus and solidus inundercooled dendrite growth:A comparative study in Ni0.7at.%B and Ni1at.%Zr system.Scripta Materialia 2007,57:413C41.[46]H.F.Wang,F.Liu,Z.Chen,W.Yang,Solute trapping model based on solute drag treatment,Trans.Nonferrous Met.Soc.China 20(2010)877~881,SCI,EI.[47]F.Liu,H.F.Wang,Z.Chen,W.Yang,G.C.Yang,Determination of activation energy for crystallization in amorphous alloys.Materials Letters,2006,60:3916~3921.[48]王海丰,刘峰,陈正,杨根仓,周尧和,非平衡凝固条件下耦合弛豫效应的M-S理论,中国科学E,37.5:674~685.[49]H.F.Wang,F.Liu,Z.Chen,Dendrite growth model incorporating non-linear liquidus and solidus in bulk undercooled melts,Journal of Central South University of Technology,2007,14:94~100.[50]H.F.Wang,F.Liu,W.Yang,Z.Chen,G.C.Yang,Y.H.Zhou,Solute trapping model incorporating diffusive interface.Acta Materialia,2008,56(4):746~753.[51]H.F.Wang,F.Liu,W.Yang,Z.Chen,G.C.Yang,Y.H.Zhou,An extended morphological stability model incorporating non-linear liquidus and solidus.Acta Materialia,2008,56(11):2592~2601.[52]F.Liu,G.C.Yang,H.F.Wang,Z.Chen,Y.H.Zhou.Nano-scale grain growth kinetics,Thermochimica Acta,2006,443:212~216.中国材料研究学会凝固科学与技术分会理事、国家自然基金等项目涵评专家、Philosophical Magazine Letters等十余种国际期刊审稿专家。 相关热点
最新收录
- 吉高宁宁(吉高寧々 Nene 06-25
- 水咲优美(水咲優美) 06-25
- 三月光(三月ひかる) 06-21
- 澪川遥(澪川はるか) 06-21
- 冈本莉里 岡本莉里 (おか 06-21
- 宗像丽奈(宗像れな) 06-21
- 温碧霞 06-21
- 舒淇 06-21
- 叶玉卿 06-21
- 叶子楣 06-21