毛甜甜
近期热点
资料介绍
个人简历
毛甜甜,女,1986生,汉族。2012年5月于中国科技大学大学获理学博士学位,同年5月进入管理学院统计与金融系进行博士后工作。工作经历:2016.02-至今 中国科学技术大学 统计与金融系 副教授2014.04-2016.01 中国科学技术大学 统计与金融系 副研究员2014.04-2015.04 滑铁卢大学统计与精算科学系 博士后2012.5-2014.03 中国科学技术大学 统计与金融系 博士后2012.11-2013.02 香港大学 统计与精算科学系 访问学者研究领域
随机比较、风险度量和极值理论。"科研项目:国家自然科学基金面上项目基于风险度量的金融监管 2017-2020近期论文
[25] He, F., Mao, T.*, Hu, T. and Shu, L. (2017). Design and analysis of the weighted likelihood ratio chart based on a new type of statistical distance measure. Expert Systems with Applications, accepted.[24] Mao, T., Xia, W. and Hu, T. (2017). Preservation of log-concavity under convolution. Probability in the Engineering and Informational Sciences, accepted.[23] Cai, J., Wang, Y. and Mao, T. (2017). Tail subadditivity of distortion risk measures and multivariate tail distortion risk measures. Insurance: Mathematics and Economics, 75, 105–116.[22] Liu, Q., Mao, T.* and Hu, T. (2017). Closure Properties of the Second-order Regular Variation Under Convolutions. Communications in Statistics - Theory and Methods, 46, 104–119.[21] Bignozzi, V., Mao, T.*, Wang, B. and Wang, R. (2016). Diversification limit of quantiles under dependence uncertainty. Extremes, 19(2), 142–170.[20] Mao, T. and Yang, F. (2015). Risk concentration based on Expectiles for extreme risks under FGM copula, Insurance: Mathematics and Economics, 64, 429–439.[19] Mao, T.* and Ng, K. (2015). Second-order properties of tail probabilities of sums and randomly weighted sums. Extremes, 18(3), 403–435.[18] Mao, T. and Wang, R. (2015). On aggregation sets and lower-convex sets. Journal of Multivariate Analysis, 138, 170–181.[17] Mao, T., Ng, K. and Hu, T. (2015). Asymptotic expansions of generalized quantiles and Expectiles for extreme risks. Probability in the Engineering and Informational Sciences, 29, 309–327.[16] Mao, T. and Hua, L. (2016). Second-order regular variation inherited from Laplace-Stieltjes transforms. Communications in Statistics - Theory and Methods, 45(15), 4569–4588.[15] Mao, T. and Hu, T. (2015). Relations between the spectral measures and dependence of MEV distributions Extremes, 18, 65–84.[14] Liu, Q., Mao, T. and Hu, T. (2014). The second-order regular variation of order statistics. Probability in the Engineering and Informational Sciences, 28(2), 209-222.[13] Mao, T. and Hu, T. (2013). Second-order properties of risk concentrations without the condition of asymptotic smoothness. Extremes, 16(4), 383-405.[12] Xu, M. and Mao, T. (2013). Optimal capital allocation based on the tail Mean-Variance model. Insurance: Mathematics and Economics, 53(3), 533-543.[11] Chen, D., Mao, T. and Hu, T. (2013). Asymptotic behavior of extremal events for aggregate dependent random variables. Probability in the Engineering and Informational Sciences, 27(4), 507-531.[10] Mao, T., Pan, X. and Hu, T. (2013). On orderings between weighted sums of variables. Probability in the Engineering and Informational Sciences, 27(1), 85-97.[09] Mao, T., Lv, W. and Hu, T. (2012). Second-order expansions of the risk concentration based on CTE. Insurance: Mathematics and Economics, 51(2), 449-456.[08] Lv, W., Mao, T. and Hu, T. (2012). Properties of second-order regular variation and expansions for risk concentration. Probability in the Engineering and Informational Sciences, 26(4), 535-559.[07] Mao, T. and Hu, T. (2012). Second-order properties of Haezendonck-Goovaerts risk measure for extreme risks. Insurance: Mathematics and Economics, 51(2), 333-343.[06] Mao, T. and Hu, T. (2012). Characterization of left-monotone risk aversion in the RDEU model. Insurance: Mathematics and Economics, 50(3), 413-422.[05] Chen, D., Mao, T., Pan, X. and Hu, T. (2012). Extreme value behavior of aggregate dependent risks. Insurance: Mathematics and Economics, 50(1), 99-108.[04] Mao, T. and Hu, T. (2011). A new proof of Cheung’s characterization of comonotonicity. Insurance: Mathematics and Economics, 48(2), 214-216.[03] Mao, T., Hu, T. and Zhao, P. (2010). Ordering convolutions of heterogeneous exponential and geometric distributions revisited. Probability in the Engineering and Informational Sciences, 24(3), 329-348.[02] Mao, T. and Hu, T. (2010). Stochastic properties of INID progressively Type-II censored order statistics. Journal of Multivariate Analysis, 101(6), 1493-1500.[01] Mao, T. and Hu, T. (2010). Equivalent characterizations on orderings of order statistics and sample ranges. Probability in the Engineering and Informational Sciences, 24(2), 245-262.Book ChapterMao, T. (2013). Second-order conditions of regular variation and inequalities of Drees type. In {\\em Lectures Notes in Statistics} (Eds: Li, H. and Li, X.) Vol.208, Springer, Chapter 16, pp. 233-246. 相关热点
最新收录
- 水咲优美(水咲優美) 06-25
- 三月光(三月ひかる) 06-21
- 澪川遥(澪川はるか) 06-21
- 冈本莉里 岡本莉里 (おか 06-21
- 宗像丽奈(宗像れな) 06-21
- 温碧霞 06-21
- 舒淇 06-21
- 叶玉卿 06-21
- 叶子楣 06-21
- 杨思敏 06-21