曾杰
近期热点
资料介绍
个人简历
学习经历\r1998年-2002年,中国科学技术大学,应用化学系,获应用化学学士学位\r2002年-2008年,中国科学技术大学,合肥微尺度物质科学国家实验室(筹),获凝聚态物理博士学位(导师为侯建国院士)\r2018年8月-2018年9月,中央党校\r\r工作经历\r2008年-2011年,美国圣路易斯华盛顿大学,任生物医学工程系博士后(合作导师:夏幼南教授)\r2011年-2012年,美国圣路易斯华盛顿大学,任研究助理教授\r2012年至今,中国科学技术大学,任合肥微尺度物质科学国家研究中心教授、博士生导师,并双聘于化学物理系\r2022年11月,任安徽工业大学党委常委、副校长研究领域
"""""随着环境意识的增强和对有限资源认识的加深,为了减少对石油、煤炭等不可再生资源的依赖,寻求清洁、廉价、便捷、高效转化利用自然界普遍存在的二氧化碳、氮气、水等资源的方法,将成为未来构建循环经济、实现可持续发展的重要任务。曾杰教授将研究领域聚焦于选择性高效转化小分子(如二氧化碳、甲烷、氮气、水)制备液体燃料和高附加值化工品,并从材料、机理和反应流程设计三个方面开展研究工作。\r\r(一)在原子尺度精准设计催化剂表界面活性位点,并调控其配位原子结构和电子结构。该方面工作涉及构筑单原子、金属间化合物等具有特定原子和组分分布的催化剂;通过配位环境和表面应力调控强关联体系催化剂的能级劈裂、轨道杂化、自旋简并、自旋-轨道耦合等电子结构。\r(二)在原子分子尺度探索碳基小分子活化转化过程中的关键过程和调控机制。在研究中,我们主要关注催化反应过程中的活性相转变、催化反应路径、表面重构、反应物和中间产物的吸附过程、产物的脱附过程、溢流、表面等离激元共振等现象。该方面工作涉及在原位反应条件下对催化剂表界面和反应中间体进行高时空分辨和高灵敏表征,以及催化反应的理论模拟和动力学研究。\r(三)新型催化反应流程设计。主要关注催化化学与合成生物学耦合,通过催化化学过程合成免分离的含能小分子,用于后续合成生物学过程制备复杂天然产物;将效率低、选择性差的催化反应过程转换成自发、串联、循环过程。该方面工作涉及到反应路线设计、反应器件研制、反应系统集成等。"近期论文
Electrosynthesis of polymer-grade ethylene via acetylene semihydrogenation over undercoordinated Cu nanodots Xue, W.; Liu, X.; Liu, C.; Zhang, X.; Li, J.; Yang, Z.; Cui, P.; Peng, H.; Jiang, Q.; Li, H.; Xu, P.; Zheng, T.*; Xia C.* and Zeng, J.* Nature Commun. 2023, 14, 2137.\r\rRational engineering of 2D materials as advanced catalyst cathodes for high‐performance metal–carbon dioxide batteries Liu, F.; Zhou, J.; Wang, Y.; Xiong, Y.; Hao, F.; Ma, Y.; Lu, P.; Wang, J.; Yin, J.; Wang, G.; Yu, J.; Yan, Y.; Zhu, Z.; Zeng, J. and Fan, Z.*Small Struct. 2023, 2300025.\r\rAmino-functionalized Cu for efficient electrochemical reduction of CO to acetate Wang, Y.; Zhao, J.; Cao, C.; Ding, J.; Wang, R.; Zeng, J.*; Bao, J.* and Liu, B.*ACS Catal. 2023, 13, 6, 3532.\r\rEfficient electroreduction of nitrate to ammonia with CuPd nanoalloy catalysts Song, Z.; Qin, L.; Liu, Y.; Zhong, Y.; Guo, Q.*; Geng, Z.* and Zeng J.*ChemSusChem DOI:10.1002/cssc.202300202.\r\rRemote synergy between heterogeneous single atoms and clusters for enhanced oxygen evolution Ding, X.; Jia, C.; Ma, P.; Chen, H.; Xue, J.; Wang, D.; Wang, R.; Cao, H.; Zuo, M.; Zhou, S.; Zhang, Z.*, Zeng, J.* and Bao, J.*Nano Lett. DOI:10.1021/acs.nanolett.3c00228.\r\rDirect synthesis of extra-heavy olefins from carbon monoxide and water Wang, C.; Du, J.; Zeng, L.; Li, Z.; Dai, Y.; Li, X.; Peng, Z.; Wu, W.; Li, H.* and Zeng, J.*Nature Commun. 2023, 14, 2857.\r\rDynamically reversible interconversion of molecular catalysts for efficient electrooxidation of propylene into propylene glycol Ke, J.; Chi, M.; Zhao, J.; Liu, Y.; Wang, R.; Fan, K.; Zhou, Y.; Xi, Z.; Kong, X.; Li, H.; Zeng, J. and Geng, Z.*J. Am. Chem. Soc. DOI: 10.1021/jacs.3c00660.\r\rBiofuel synthesis from carbon dioxide via a bio-electrocatalysis system Bi, H.; Wang, K.; Xu, C.; Wang, M.; Chen, B.; Fang, Y.; Tan, X.*; Zeng, J. and Tan, T.*Chem. Catal. 2023, 3, 3, 100557.\r\rStabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling Liang, Y.; Zhao, J.; Yang, Y.; Hung, S.-F.; Li, J.; Zhang, S.; Zhao, Y.; Zhang, A.; Wang, C.; Appadoo, D.; Zhang, L.; Geng, Z.*; Li, F.* and Zeng, J.*Nature Commun. 2023, 14, 474.\r\rSelective CO2 electrolysis to CO using isolated antimony alloyed copper Li, J.; Zeng, H.; Dong, X.; Ding, Y.; Hu, S.; Zhang, R.; Dai, Y.; Cui, P.; Xiao, Z.; Zhao, D.; Zhou, L.; Zheng, T.; Xiao, J.*; Zeng, J.* and Xia, C.*Nature Commun. 2023, 14, 340.\r\rRegulating spin states in oxygen electrocatalysis Zhang, Z.; Ma, P.; Luo, L.; Ding, X.; Zhou, S.* and Zeng, J.*Angew. Chem. Int. Ed. 2023, e202216837.\r\rOne-step approach for constructing high-density single-atom catalysts toward overall water splitting at industrial current densities Cao, D.; Zhang, Z.; Cui, Y.; Zhang, R.; Zhang, L.; Zeng, J.* and Cheng, D.* Angew. Chem. Int. Ed. 2023, e202214259.\r\rDirecting in-situ self-optimization of single-atom catalysts for improved oxygen evolution Ma, P.; Feng, C.; Chen, H.; Xue, J.; Ma, X.; Cao, H.; Wang, D.; Zuo, M.; Wang, R.; Ding, X.; Zhou, S.; Zhang, Z.*; Zeng, J. and Bao, J. J. Energy. Chem. 2023, 80, 284.\r\rPhoto- and electrocatalytic CO2 reduction based on stable lead-free perovskite Cs2PdBr6 Wu D.; Wang, C.; Huo, B.; Hu, K.; Mao, X.; Geng, Z.*; Huang, Q.*; Zhang, W.*; Zeng, J. and Tang, X.* Energy Environ. Matter. DOI: 10.1002/eem2.12411.\r\rFunctional CeOx nanoglues for robust atomically dispersed catalysts Li, X.; Pereira-Hernández, X. I.; Chen, Y.; Xu, J.; Zhao, J.; Pao, C.-W.; Fang, C.-Y.; Zeng, J.*; Wang, Y.*; Gates, B. C.* and Liu, J.* Nature 2022, 611, 284.\r\rUpcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering Zheng, T.; Zhang, M.; Wu, L.; Guo, S.; Liu, X.; Zhao, J.; Xue, W.; Li, J.; Liu, C.; Li, X.; Jiang, Q.; Bao, J.; Zeng, J.*; Yu, T.* and Xia, C.*Nature Catal. 2022, 5, 388.\r\rVolcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution Cao, D.; Xu, H.; Li, H.; Feng, C.; Zeng, J.* and Cheng, D.*Nature Commun. 2022, 13, 5843.\r\rAmbient-pressure hydrogenation of CO2 into long-chain olefins Li, Z.; Wu, W.; Wang, M.; Wang, Y.; Ma, X.; Luo, L.; Chen, Y.; Fan, K.; Pan, Y.; Li, H.* and Zeng, J.*Nature Commun. 2022, 13, 2396.\r\rSelectively anchoring single atoms on specific sites of supports for improved oxygen evolution Zhang, Z.; Feng, C.; Wang, D.; Zhou, S.*; Wang, R.; Hu, S.; Li, H.; Zuo, M.; Kong, Y.*; Bao J.* and Zeng, J.*Nature Commun. 2022, 13, 2473.\r\rFacet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals Ke, J.; Zhao, J,; Chi, M.; Wang, M.; Kong, X.; Chang, Q.; Zhou, W.; Long, C.; Zeng, J. and Geng, Z.*Nature Commun. 2022, 13, 932.\r\rTuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution Feng, C.; Zhang, Z.; Wang, D.; Kong, Y.; Wei, J.; Wang, R.; Ma, P.; Li, H.; Geng, Z.; Zuo, M.; Bao, J.; Zhou, S.* and Zeng, J.*J. Am. Chem. Soc. 2022, 144, 21, 9271.\r\rEfficient electroreduction of nitrate into ammonia at ultra-low concentrations via enrichment effect Song, Z.; Liu, Y.; Zhong, Y.; Guo, Q.; Zeng, J. and Geng, Z.* Adv. Mater. 2022, 34, 22043.\r\rSynergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4 Liu, P.; Huang, Z.; Gao, X.; Hong, X.; Zhu, J.; Wang, G; Wu, Y.; Zeng, J. and Zheng, X*. Adv. Mater. 2022, 34, 2200057.\r\rCO2 hydrogenation over Copper/ZnO single-atom catalysts: water-promoted transient synthesis of methanol Wu, W.; Wang, Y.; Luo, L.; Wang, M.; Li, Z.; Chen, Y.; Wang, Z.; Chai, J.; Cen, Z.; Shi, Y.; Zhao, J.; Zeng, J. and Li, H.*Angew. Chem. Int. Ed. 2022, 61(48), e202213024.\r\rNanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling Liu, C.; Zhang, M.; Li, J.; Xue, W.; Zheng, T.*; Xia, C.* and Zeng, J.* Angew. Chem. Int. Ed. 2022, 61(3), e202113498.\r\rPhotocatalytic conversion of methane: recent advancements and prospects Li, Q.; Ouyang, Y.; Li, H.; Wang, L.* and Zeng, J.*Angew. Chem. Int. Ed. 2022, 61(2), e202108069.\r\rEnhancing CO2 electroreduction selectivity toward multicarbon products via tuning the local H2O/CO2 molar ratio Kong, X.; Wang, C.; Xu, Z.; Zhong, Y.; Liu, Y.; Qin, L.; Zeng, J.and Geng, Z.* Nano Lett. 2022, 22, 19, 8000.\r\rUnderstanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction Kong, X.; Zhao, J.; Ke, J.; Wang, C.; Li, S.; Si, R.; Liu, B.; Zeng, J. and Geng Z.* Nano Lett. 2022, 22, 9, 3801.\r\rAdjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C-C coupling towards CO2 Eletroreduction Zhong, Y.; Kong, X.; Song, Z.; Liu, Y.; Peng, L.; Zhang, L.; Luo, X.; Zeng, J. and Geng, Z.* Nano Lett. 2022, 22, 6, 2554.\r\rHeterogeneous catalysts toward CO2 hydrogenation for sustainable carbon cycle Wang, M.; Luo, L.; Wang, C.; Du, J.; Li, H.* and Zeng, J.*Acc. Mater. Res. 2022, 3, 6, 565.\r\rNeighboring cationic vacancy assisted adsorption optimization on single-atom sites for improved oxygen evolution Wang, D.; Xue, J; Ding, X.; Wei, J.; Feng, C.; Wang, R.; Ma, P.; Wang, S.; Cao, H.; Wang, J.; Zuo, M.; Zhou, S.; Zhang, Z.*; Zeng, J.* and Bao, J.* ACS Catal. 2022, 12, 19, 12458.\r\rTuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation Zhang, Y.; Wang, Q.; Yang, S.; Wang, H.; Rao, D.; Chen, T.; Wang, G.; Lu, J.; Zhu, J.; Wei, S.; Zheng, X.* and Zeng, J. Adv. Funct. Mater. 2022, 32, 2112452.\r\rStretching C-H bond in methane by solid frustrated Lewis pairs Zhao, J.; Yan, H. and Zeng, J.* Chem. Catal. 2022, 2, 7, 1521.\r\rModulating hydrogen bonding in single-atom catalysts to break scaling relation for oxygen evolution Ma, P.; Feng, C.; Kong, Y.; Wang, D.; Zuo, M.; Wang, S.; Wang, R.; Kuang, L.; Ding, X.; Zhou, S.; Zhang, Z.*; Zeng, J.* and Bao, J.* Chem Catal. 2022, 2, 2764.\r\rPromoting N2 electroreduction into NH3 over porous carbon by introducing oxygen-containing groups Song, Z.; Liu, Y.; Zhao, J.; Zhong, Y.; Qin, L.; Guo, Q.; Geng, Z.* and Zeng, J. Chem. Eng. J. 2022, 434, 134636.\r\rA novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for acidic oxygen reduction Iqbal, R.; Ali, S.; Yasin, G.; Ibraheem, S.; Tabish, M.; Hamza, M.; Chen, H.; Xu, H.; Zeng, J. and Zhao, W.* Chem. Eng. J. 2022, 430, 132642.\r\rPromoting electrocatalytic CO2 methanation using a molecular modifier on Cu surfaces Wang, C.; Kong, X.; Huang, J.; Yang, Y.; Zheng, H.; Wang, H.; Dai, S.; Zhang, S.; Liang, Y.; Geng, Z.*; Li, F.* and Zeng, J.* J. Mater. Chem. A 2022, 14, 474.\r\rSingle atoms supported on metal oxides for energy catalysis Li, R.; Luo, L.; Ma, X.; Wu, W.; Wang, M. and Zeng, J.* J. Mater. Chem. A 2022, 10, 5717.\r\rHighly active and thermostable submonolayer La(NiCo)OΔ catalyst stabilized by a perovskite LaCrO3 support Zhao, T.; Zhao, J.; Tao, X.; Yu, H.; Li, M.; Zeng J. and Wang, H.* Commun. Chem. 2022, 5, 70.\r\rAtomically dispersed platinum in surface and subsurface sites on MgO have contrasting catalytic properties for CO oxidation Chen, Y.; Rana, R.; Huang, Z.; Vila, F. D.; Sours, T.;Perez-Aguilar, J. E.; Zhao, X.; Hong, J.; Hoffman, A. S.; Li, X.; Shang, C.; Blum, T.; Zeng, J.; Chi, M.; Salmeron, M.; Kronawitter, C. X.; Bare, S. R.*; Kulkarni, A. R.* and Gates, B. C.* J. Phys. Chem. Lett. 2022, 13, 17, 3896.\r\rProgresses on carbon dioxide electroreduction into methane Zheng, H.; Yang, Z.; Kong, X.; Geng, Z.* and Zeng, J.* Chin. J. Catal. 2022, 43, 1634.\r\rLow-temperature C–H bond activation: ethylbenzene-to-styrene conversion on rutile TiO2(110) Lai, Y.; Pu, Z.; Liu, P.; Li, F.; Zeng, J.*; Yang, X. and Guo, Q.* J. Phys. Chem. C 2022, 126, 14, 6231.\r\rElectrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate Lin, C.; Liu, Y.; Kong, X.; Geng, Z.* and Zeng, J.* Nano Res. 2022, 15, 10078.\r\rLysine-functionalized SnO2 for efficient CO2 electroreduction into formate Lin, C.; Xu, Z.; Kong, X.; Zheng, H.; Geng, Z.* and Zeng, J.* ChemNanoMat 2022, 8, e202200020.\r\rMolecular stabilization of sub-nanometer Cu clusters for selective CO2 electromethanation Zhang, H.; Yang, Y.; Liang, Y.; Li, J.; Zhang, A.; Zheng, H.; Geng, Z.*; Li, F.* and Zeng, J.* ChemSusChem 2022, 15(1), e202102010.\r\rCopper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying Zheng, T.; Liu, C.; Guo, C.; Zhang, M.; Li, X.; Jiang, Q.; Xue, W.; Li, H.; Li, A.; Pao, C.-W.; Xiao, J.*; Xia, C.* and Zeng, J.* Nature Nanotechnol. 2021, 16, 1386.\r\rWater enables mild oxidation of methane to methanol on gold single-atom catalysts Luo, L.; Luo, J.; Li, H.*; Ren, F.; Zhang, Y.; Liu, A.; Li, W.* and Zeng, J.* Nature Commun. 2021, 12, 1218.\r\rSymmetry-breaking sites for activating linear carbon dioxide molecules Li, H.; Zhao, J.; Luo, L.; Du, J. and Zeng, J.* Acc. Chem. Res. 2021, 54, 1454.\r\rDoping regulation in transition metal compounds for electrocatalysis Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z.* and Zeng, J.* Chem. Soc. Rev. 2021, 50, 9817.\r\rPd-Pt tesseracts for oxygen reduction reaction Chen, S.; Zhao, J.; Su, H.; Li, H.; Wang, H.; Hu, Z.; Bao, J.* and Zeng, J.* J. Am. Chem. Soc. 2021, 143, 496.\r\rCopper-based plasmonic catalysis: recent advances and future perspectives Xin, Y.; Yu, K.; Zhang, L.; Yang, Y.; Yuan, H.; Li, H.; Wang, L.* and Zeng, J.* Adv. Mater. 2021, 33, 2008145.\r\rBias-adaptable CO2-to-CO conversion via tuning the binding of competing intermediates Liang, Y.; Zhao, J.; Zhang, H.; Zhang, A.; Wang, S.; Li, J.; Shakouri, M.; Xiao, Q.; Hu, Y.; Liu, Z.; Geng, Z.*; Li, F.* and Zeng, J.* Nano Lett. 2021, 21, 20, 8924.\r\rElectronic tuning of SnS2 nanosheets by hydrogen incorporation for efficient CO2 electroreduction Zhang, A.; Liang, Y.; Li, H.; Wang, S.; Chang, Q.; Peng, K.; Geng, Z.* and Zeng, J. Nano Lett. 2021, 21, 18, 7789.\r\rIn-situ generated high-valent iron single-atom catalyst for efficient oxygen evolution Zhang, Z.; Feng, C.; Li, X.; Liu, C.; Wang, D.; Si, Rui.; Yang, J.; Zhou, S.* and Zeng, J.* Nano Lett. 2021, 21, 11, 4795.\r\rCo-based molecular catalysts for efficient CO2 reduction via regulating spin states Kong, X.; Ke, J.; Wang, Z.; Liu, Y.; Wang, Y.; Zhou, W.; Yang, Z.; Yan, W.; Geng, Z.* and Zeng, J.* Appl. Catal. B: Environ. 2021, 290, 120067.\r\rA phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH Xing, Y.; Chen, H.; Liu, Y.; Sheng, Y.; Zeng, J.; Geng, Z.* and Bao, J.* Chem. Commun. 2021, 57, 1502.\r\rInductive effect as a universal concept to design efficient catalysts for CO2 electrochemical reduction: electronegativity difference makes a difference Chen, H.; Fu, W.; Geng, Z.; Zeng, J.* and Yang, B.* J. Mater. Chem. A 2021, 9, 4626.\r\rSynthesis of tunable syngas on cobalt-based catalysts towards carbon dioxide reduction Huang, M.; Kong, X.; Wang, C.; Geng, Z.; Zeng, J.* and Bao, J.* ChemNanoMat 2021, 7, 2.\r\rEnhance the activity of multi-carbon products for Cu via P doping Kong, X.; Wang, C.; Zheng, H.; Geng, Z.*; Bao, J.* and Zeng, J.* Sci. China Chem. 2021, 7, 1096.\r\rA theory-guided X-ray absorption spectroscopy approach for identifying active sites in atomically dispersed transition-metal catalysts Chen, Y.; Rana, R.; Sours, T; Vila, F. D.; Cao, S.; Blum, T.; Hong, J.; Hoffman, A. S.; Fang, C.-Y.; Huang, Z.; Shang, C.; Wang, C.; Zeng, J.; Chi, M.; Kronawitter, C. X.*; Bare, S. R.*; Gates, B. C.*, and Kulkarni, A. R.* J. Am. Chem. Soc. 2021, 143, 48, 20144.\r\rGlutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8 Zhang, Y.*; Huang, X.; Wang, L.; Cao, C.; Zhang, H.; Wei, P.; Ding, H.; Song, Y.; Chen, Z.; Qian, J.; Zhong, S.; Liu, Z.; Wang, M.; Zhang, W.; Jiang, W.; Zeng, J.; Yao, G.* and Wen, L.*Biomaterials 2021, 271, 120720.\r\rProbing the nickel corrosion phenomena in alkaline electrolyte using tender x-ray ambient pressure x-ray photoelectron spectroscopy Su, H.; Ye, Y.; Lee, K.-J.; Zeng, J. and Crumlin, E. J.* J. Phys. D: Appl. Phys. 2021, 374001.\r\rElectrochemical deposition as a universal route for fabricating single-atom catalysts Zhang, Z.; Feng, C.; Liu, C.; Zuo, M.; Qin, L.; Yan, X.; Xing, Y.; Li, H.; Si, R.; Zhou, S.* and Zeng, J.* Nature Commun. 2020, 11, 1215.\r\rAdvanced electrocatalysts with single-metal-atom active sites Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C.; Zhao, D.; Xiao, F.; Zhu, X.; Zeng, Y.; Shao, M.*; Chen, S.*; Wu, G.*; Zeng, J.* and Wang, C.* Chem. Rev. 2020, 120, 12217.\r\rSingle atom of iron on MoS2 nanosheets for N2 electroreduction into ammonia Su, H.; Chen, L.; Chen, Y.; Si, R.; Wu, Y.; Wu, X.; Geng, Z.*; Zhang, W.* and Zeng, J.* Angew. Chem. Int. Ed. 2020, 59, 20411.\r\rSurface iron species in a palladium-iron intermetallic promote and stabilize CO2 methanation Luo, L.; Wang, M.; Cui, Y.; Chen, Z.; Wu, J.; Cao, Y.; Luo, J.; Dai, Y.; Li, W.-X.; Bao, J.* and Zeng, J.* Angew. Chem. Int. Ed. 2020, 59, 14434.\r\rA highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction Liu, Y.; Li, Q.; Guo, X.; Kong, X.; Ke, J.; Chi, M.; Li, Q.; Geng, Z.* and Zeng, J.* Adv. Mater. 2020, 32, 1907690.\r\rIn-Situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate Zhang, A.; Liang, Y.; Li, H.; Zhang, B.; Liu, Z.; Chang, Q.; Zhang, H.; Zhu, C.; Geng, Z.*; Zhu, W.* and Zeng, J.* Nano Lett. 2020, 20, 8229.\r\rDimensionality control of electrocatalytic activity in perovskite nickelates Cao, C.; Shang, C.; Li, X.; Wang, Y.; Liu, C.; Wang, X.; Zhou, S.* and Zeng, J.* Nano Lett. 2020, 20, 2837.\r\rAtomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis Li, X.; Li, X.; Liu, C.; Huang, H.*; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.*; Yang, J. and Zeng, J.* Nano Lett. 2020, 20, 1403.\r\rBi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid Xing, Y.; Kong, X.; Guo, X.; Liu, Y.; Li, Q.; Zhang, Y.; Sheng, Y.; Yang, X.; Geng, Z.* and Zeng, J.* Adv. Sci. 2020, 7, 1902989.\r\rEnhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies Liu, Y.; Kong, X.; Guo, X.; Li, Q.; Ke, J.; Wang, R.; Li, Q.; Geng, Z.* and Zeng, J.* ACS Catal. 2020, 10, 1077.\r\rCoordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts Kong, X.; Liu, Y.; Li, P.; Ke, J.; Liu, Z.; Ahmad, F.; Yan, W.; Li, Z.; Geng, Z.* and Zeng, J.* Appl. Catal. B: Environ. 2020, 268, 118452.\r\rAtomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core-shell nanocubes as an ideal platform Cui, Y.; Ma, K.; Chen, Z.; Yang, J.; Geng, Z.* and Zeng, J.* J. Catal. 2020, 381, 427.\r\rTuning the coordination number of Fe single atoms for the efficient reduction of CO2 Chen, H.; Guo, X.; Kong, X.; Xing, Y.; Liu, Y.; Yu, B.; Li, Q.; Geng, Z.*; Si, R.* and Zeng, J.*Green Chem. 2020, 22, 7529.\r\rBoost selectivity of HCOO- using anchored Bi single atoms towards CO2 Reduction Yang, X.; Cheng, Y.; Qin, L.; Wu, X.; Wu, Y.; Yan, T.; Geng, Z.* and Zeng, J.* ChemSusChem 2020, 13, 6307.\r\rUltra-sensitive and selective detection of arsenic(III) via electroanalysis over cobalt single-atom catalysts Li, P.-H.; Yang, M.*; Li, Y.-X.; Song, Z.-Y.; Liu, J.; Lin, C.-H.*; Zeng, J.* and Huang, X.* Anal. Chem. 2020, 92, 6128.\r\rThe midas touch on copper into palladium Zeng, J.* Sci. China Chem. 2020, 63, 1740.\r\rConstructing subtle grain boundaries on Au sheets for enhanced CO2 photoreduction Li, X.; Zheng, T.; Zhang, L.; Zhao, S.; Chen, Y.; Wei, M.; Shang, C.; Bao, J.* and Zeng, J.* Sci. China Chem. 2020, 63, 1705.\r\rOscillation of work function during reducible metal oxide catalysis and correlation with the activity property Pan, Y.; Shen, X.; Holly, M. A.; Yao, L.; Wu, D.; Bentalib, A.; Yang, J.; Zeng, J.* and Peng, Z.* ChemCatChem 2020, 12, 85.\r\rQuantitative insights into non-uniform plasmonic hotspots due to symmetry breaking induced by oblique incidence Zhou, Y.*; Li, H.; Zhang, G.; Wei, D.; Zhang, L.; Meng, Y.; Zheng, X.; Ma, Z.*; Zeng, J.* and Yang, X. Phys. Chem. Chem. Phys. 2020, 22, 19932.\r\rMolecular modification of single cobalt sites boosts the catalytic activity of CO2 electroreduction into CO Zhong, Y.; Kong, X.; Geng, Z.; Zeng, J.*; Luo, X.* and Zhang, L. Chem PhysChem 2020, 21, 2051.\r\rProbing the surface chemistry for Reverse Water Gas Shift Reaction on Pt(111) using Ambient Pressure X-ray Photoelectron Spectroscopy Su, H.; Ye, Y.; Lee, K.-J.; Zeng, J.; Mun, B. S. and Crumlin, E. J.* J. Catal. 2020, 391, 123. 相关热点
最新收录
- 水咲优美(水咲優美) 06-25
- 三月光(三月ひかる) 06-21
- 澪川遥(澪川はるか) 06-21
- 冈本莉里 岡本莉里 (おか 06-21
- 宗像丽奈(宗像れな) 06-21
- 温碧霞 06-21
- 舒淇 06-21
- 叶玉卿 06-21
- 叶子楣 06-21
- 杨思敏 06-21