热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
朱永贵
2023-05-16 10:34
  • 朱永贵
  • 朱永贵 - 教授 博导-中国传媒大学-信息与通信工程学院-个人资料

近期热点

资料介绍

个人简历


教育背景
博士, 中国科学院数学与系统科学研究院, 中国, 2005.6;
讲授课程
研究生课程:《最优化理论与应用》,32学时;《矩阵论》,32学时;《应用泛函分析》,32学时

研究领域


图像处理;智能优化;智能计算"研究课题
1.国家自然科学基金面上项目: 基于压缩感知的核磁共振成像问题驱动的应用数学研究 (2016-2019);
2.教育部科学技术研究重点项目:基于偏微分方程的图像处理问题的研究(2009-2011)
3.中国传媒大学高精尖项目:智能传播效果评估研究(2018-2019)
4.中国传媒大学优秀博士生导师团队科研提升计划项目:人工智能优化算法研究(2019-2020)
5.中国传媒大学理工科规划项目:压缩感知理论方法研究(2013-2015)"

近期论文


[1]Jun Zhang, Chengzhi Deng, Yuying Shi, Shengqian Wang, and Yonggui Zhu. A fast linearised augmented Lagrangian method for a mean curvature based model. East Asian Journal on Applied Mathematics. Vol.8, No.3, pp. 463-476, 2018. (SCI)
[2]Xiaole Zhang, Yuying Shi, Zhifeng Pang, and Yonggui Zhu. Fast algorithm for image denoising with different boundary conditions. Journal of the Franklin Institute. Vol.354,No. 11, pp. 4595-4614, 2017. (SCI)
[3]Yonggui Zhu, Xinyan Yu, Bin Zhang, and Xiuxiu Niu. A nonlinear diffusion model for image restoration. Acta Mathematicea Applicatae Sinica, English Series. Vol.32, No.3, pp. 631-646, 2016. (SCI)
[4]Tongtong JIa, Yuying Shi, Yonggui Zhu, and Lei Wang. An image restoration model combining mixed L1/L2 fidelity terms. Journal of Visual Communication & Image Representation. Vol.38, pp. 461-473, 2016. (SCI)
[5]Yonggui Zhu and Xiaoman Liu. A fast method for L1-L2 modeling for MR image compressive sensing. Journal of Inverse and Ill-Posed Problems. Vol.23, No.3, pp. 211-218, 2015. (SCI)
[6]Yonggui Zhu, Yuying Shi, Bin Zhang, and Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems and Imaging. Vol.8, No.3, pp. 925-937, 2014. (SCI)
[7] Jingjing Liu, Yuying Shi, and Yonggui Zhu. A fast and robust algorithm for image restoration with periodic boundary conditions. Journal of Computational Analysis and Applications. Vol.17, No.3, pp. 524-538, 2014. (SCI)
[8] Yonggui Zhu and Yuying Shi. A fast method for reconstruction of total-variation MR images with a periodic boundary condition. IEEE Signal Processing Letters. Vol.20, No.4, pp. 291-294, 2013. (SCI)
[9]Yuying Shi,Xiaozhong Yang, and Yonggui Zhu. Bregman iterative model using the G-norm. Acta Mathematicea Applicatae Sinica, English Series. Vol.30, No.1, pp. 179-186, 2014. (SCI)
[10]Yonggui Zhu, Tong Kang, and Temuer Chaolu. New exact solitary-wave solutions for the K(2,2,1) and K(3,3,1) equations. Chaos, Solitons and Fractals. Vol.33, No.4, pp. 1411-1416, 2007. (SCI)
[11] Yonggui Zhu and Lu Chao. New solitary solutions with compact support for Boussinesq-like B(2n,2n) equations with fully nonlinear dispersion. Chaos, Solitons and Fractals. Vol.32, No.2, pp. 768-772, 2007. (SCI)
[12] Yonggui Zhu and Zhuosheng Lv. New exact solitary-wave special solutions for the nonlinear dispersive K(m,n) equations. Chaos, Solitons and Fractals. Vol.27, No.3, pp. 836-842, 2006. (SCI)
[13] Yonggui Zhu and Xiaoshan Gao. Exact special solitary solutions with compact support for the nonlinear dispersive K(m,n) equations. Chaos, Solitons and Fractals. Vol.27, No.2, pp. 487-493, 2006. (SCI)
[14] Yonggui Zhu, Qianshun Chang, and Shengchang Wu. Construction of exact solitary solutions for Boussinesq-like B(m,n) equations with fully nonlinear dispersion by the decomposition method. Chaos, Solitons and Fractals. Vol.26, No.3, pp. 897-903, 2005. (SCI)
[15] Yonggui Zhu, Qianshun Chang, and Shengchang Wu. Exact solitary solutions with compact support for the nolinear dispersive Boussinesq-like B(m,n) equations. Chaos, Solitons and Fractals. Vol.26, No.2, pp. 407-413, 2005. (SCI)
[16] Yonggui Zhu, Qianshun Chang, and Shengchang Wu. A new algorithm for calculating Adomian polynomials. Applied Mathematics and Computation. Vol.169, No.1, pp. 402-416, 2005. (SCI)
[17] Yonggui Zhu, Qianshun Chang, and Shengchang Wu. Exact solitary-wave solutions with compact support for the modified KdV equation. Chaos, Solitons and Fractals. Vol.24, No.1, pp. 365-369, 2005. (SCI)
[18] Yonggui Zhu. Exact special solutions with solitary patterns for Boussinesq-like B(m,n) equations with fully nonlinear dispersion. Chaos, Solitons and Fractals. Vol.22, No.1, pp. 213-220, 2004. (SCI)
1.电子和电气工程师学会(IEEE)会员
2.中国图象图形学学会(CSIG)会员
3.CSIG图象应用军民融合专业委员会委员
4.中国工业与应用数学学会(CSIAM)会员

相关热点

扫码添加好友