朱永法
近期热点
资料介绍
个人简历
朱永法, 1964年11月23日出生于江苏省江阴市。汉族,理学博士,清华大学化学系教授、博导,国家电子能谱中心副主任。1981-1985年在南京大学化学系学习,获理学学士学位。 1985-1988年在北京大学化学系研究生,从事催化剂表面化学研究,获理学硕士学位。1992-1995年在清华大学化学系在职攻读博士学位,开展了薄膜材料的表面与界面研究,获理学博士学位。1995-1997年在日本爱媛大学化学系从事博士后研究工作,研究方向为固体表面物理化学\r\r1988年7月到现在,一直在清华大学化学系工作,从事薄膜材料、纳米材料、环境催化以及光催化的研究。主要研究方向是能源光催化与环境催化的研究。目前,在开设的课程有:仪器分析本科生课程、电子能谱学、材料分析化学、高等分析化学等研究生课程。出版专著三部(纳米材料测试与表征技术,材料分析化学,光催化:环境净化与绿色能源探索)。\r\r承担了科技部973和863项目、国家自然科学基金重点、国家自然科学基金仪器专项,国际重点合作项目和面上项目等基础研究课题,同时,还承担了地方政府和企业的有关吸附净化材料、光催化材料及其在空气和水环境净化方面的应用课题。获得国家发明专利授权26项,多项环境净化技术已经实现了产业化。研究领域
"""""1.光催化材料及其在环境净化和能源领域应用研究\r通过探索纳米结构复合氧化物光催化新材料提高光催化活性以及拓展可见光的响应范围。通过表面杂化作用,提高光催化剂的活性以及耐光腐蚀性能,同时产生可见光活性。探索表面缺陷对光催化活性提高以及产生可见光活性的内在规律。利用光催化材料对室内空气中有机物的污染和微生物污染进行净化研究。探索光催化材料 在光解水制氢以及CO2光还原资源化方面的规律和机制。\r\r2.室内空气的净化研究\r利用高活性光催化材料,通过在各种基材上形成多孔膜,提高光催化的净化性能,开展了室内空气净化的研究。探索多孔和单层g-C3N4的可控合成,通过与半导体光催化剂的杂化,探索提高可见光活性的新途径,并应用于室内自然光下的空气净化研究。\r\r3.吸附-催化燃烧工业废气的净化研究\r探索非贵金属催化燃烧催化剂,通过纳米结构的控制合成,提高其低温活性以及稳定性。并利用吸附作用和催化燃烧的联用技术,解决工业废气的净化难题"近期论文
Zhang, Z.; Wang, L.; Liu, W.; Yan, Z.; Zhu, Y.; Zhou, S.; Guan, S., Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. National Science Review 2021, 8 (5).\r\rZhang, H.; Dong, Y.; Li, D.; Wang, G.; Leng, Y.; Zhang, P.; Miao, H.; Wu, X.; Jiang, P.; Zhu, Y., Photochemical synthesis of Ni-Ni(OH)(2) synergistic cocatalysts hybridized with CdS nanorods for efficient photocatalytic hydrogen evolution. Flatchem 2021,\r\rZhang, H.; Chen, X.; Zhang, Z.; Yu, K.; Zhu, W.; Zhu, Y., Highly-crystalline Triazine-PDI Polymer with an Enhanced Built-in Electric Field for Full-Spectrum Photocatalytic Phenol Mineralization. Applied Catalysis B-Environmental 2021, 287.\r\rZafar, Z.; Yi, S.-S.; Li, J.-P.; Li, C.-Q.; Zhu, Y.-F.; Zada, A.; Yao, W.-J.; Liu, Z.-Y.; Yue, X.-Z., Recent Development in Defects Engineered Photocatalysts: An Overview of the Experimental and Theoretical Strategies. Energy & Environmental Materials 202\r\rYan, G.; Huarui, L.; Wei, M.; Wenxin, S.; Yongfa, Z.; Wonyong, C., Photocatalytic activity enhanced via surface hybridization. Carbon Energy 2020, 2 (3), 308-49.\r\rWu, Z.; Shen, J.; Ma, N.; Li, Z.; Wu, M.; Xu, D.; Zhang, S.; Feng, W.; Zhu, Y., Bi4O5Br2 nanosheets with vertical aligned facets for efficient visible-light-driven photodegradation of BPA. Applied Catalysis B-Environmental 2021, 286.\r\rWei, Z.; Wang, W.; Li, W.; Bai, X.; Zhao, J.; Tse, E. C. M.; Phillips, D. L.; Zhu, Y., Steering Electron-Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angewandte Chemie-Inte\r\rWei, Z.; Li, W.; Hu, J.; Ma, X.; Zhu, Y., Interfacial internal electric field and oxygen vacancies synergistically enhance photocatalytic performance of bismuth oxychloride. Journal of Hazardous Materials 2021, 402.\r\rWang, D.; Liu, C.; Zhang, Y.; Wang, Y.; Wang, Z.; Ding, D.; Cui, Y.; Zhu, X.; Pan, C.; Lou, Y.; Li, F.; Zhu, Y.; Zhang, Y., CO2 Electroreduction to Formate at a Partial Current Density up to 590mA mg-1 via Micrometer-Scale Lateral Structuring of Bismuth N\r\rPan, C.; Wang, Z.; Lou, Y.; Zhang, Y.; Dong, Y.; Zhu, Y., The construction of a wide-spectrum-responsive and high-activity photocatalyst, Bi25CoO40, via the creation of large external dipoles. J. Mater. Chem. A 2021, 9 (6), 3616-3627.\r\rMiao, H.; Yang, J.; Sheng, Y.; Li, W.; Zhu, Y., Controlled Synthesis of Higher Interfacial Electron Transfer Graphite-Like Carbon Nitride/Perylenetetracarboxylic Diimide Heterogeneous for Enhanced Photocatalytic Activity. Solar Rrl 2021, 5 (2).\r\rLi, Y.; Pan, C.; Wang, G.; Leng, Y.; Jiang, P.; Dong, Y.; Zhu, Y., Improving the photocatalytic activity of benzyl alcohol oxidation by Z-scheme SnS/g-C3N4 dagger. New Journal of Chemistry 2021, 45 (15), 6611-6617.\r\rChen, X.; Wang, J.; Chai, Y.; Zhang, Z.; Zhu, Y., Efficient Photocatalytic Overall Water Splitting Induced by the Giant Internal Electric Field of a g-C3N4/rGO/PDIP Z-Scheme Heterojunction. Adv. Mater. 2021, 33 (7).\r\rYu, K. Y.; Zhang, H. J.; Su, C. L.; Zhu, Y. F., Visible-Light-Promoted Efficient Aerobic Dehydrogenation of N-Heterocycles by a Tiny Organic Semiconductor Under Ambient Conditions. Eur. J. Org. Chem. 2020, 2020 (13), 1956-1960.\r\rGuo, Y.; Nan, J.; Xu, Y. P.; Cui, F. Y.; Shi, W. X.; Zhu, Y. F., Thermodynamic and dynamic dual regulation Bi2O2CO3/Bi5O7I enabling high-flux photogenerated charge migration for enhanced visible-light-driven photocatalysis. J. Mater. Chem. A 2020, 8 (20),\r\rXiong, J.; Li, X. B.; Huang, J. T.; Gao, X. M.; Chen, Z.; Yao, W. Q.; Zhu, Y. F., CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Applied Catalysis B-Environmental 2020,\r\rZhang, Z. J.; Chen, X. J.; Zhang, H. J.; Liu, W. X.; Zhu, W.; Zhu, Y. F., A Highly Crystalline Perylene Imide Polymer with the Robust Built-In Electric Field for Efficient Photocatalytic Water Oxidation. Adv. Mater. 2020, 32 (32), 6.\r\rXu, Y. S.; Qiu, C. T.; Fan, X.; Ju, H. X.; Zhu, Y. F.; Su, C. L., K+-induced crystallization of polymeric carbon nitride to boost its photocatalytic activity for H-2 evolution and hydrogenation of alkenes. Applied Catalysis B-Environmental 2020,268, 7.\r\rYu, K. Y.; Zhang, H. J.; Sheng, Y. Q.; Zhu, Y. F., Visible-light-promoted aerobic oxidative hydroxylation of arylboronic acids in water by hydrophilic organic semiconductor. Tetrahedron Lett. 2020, 61 (28), 5.\r\rXu, J.; Wang, Z. P.; Zhu, Y. F., Highly efficient visible photocatalytic disinfection and degradation performances of microtubular nanoporous g-C3N4 via hierarchical construction and defects engineering. J. Mater. Sci. Technol. 2020, 49, 133-143. 相关热点
最新收录
- 武藤彩香(武藤あやか Ay 06-20
- 袁嘉敏 06-20
- 黄子佼 06-19
- 黄子佼 06-19
- 唐家三少 06-19
- 广末凉子 06-19
- 広末凉子(广末凉子 , Ryo 06-19
- 简恺乐(蝴蝶姐姐) 06-19
- 周扬青 06-19
- 东条夏( 東條なつ Tojo Na 06-17