热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
程瑶
2023-05-13 10:19
  • 程瑶
  • 程瑶 - 讲师-苏州科技大学-数理学院-个人资料

近期热点

资料介绍

个人简历


2010.9—2016.6 就读于南京大学数学系,获理学博士学位;2016.9—至今工作于苏州科技大学数理学院信息与计算科学系,主讲高等数学与计算方法等本科生课程;2019年被遴选为硕士生导师。曾获苏州科技大学第九届青年教师讲课竞赛二等奖以及江苏省高校首届数学微课教学竞赛三等奖。

研究领域


本人一直从事微分方程数值解的研究,主要研究方向有(1)奇异摄动问题及对流扩散方程的数值方法研究;(2)基于一般数值通量局部间断Galerkin(LDG)有限元方法的最优误差估计;(3)特殊网格设置下LDG方法的一致收敛性分析。

近期论文


[1] Y.Cheng, Optimal error estimate of the local discontinuous Galerkin methods based on the generalized alternatingnumerical fluxes for nonlinear convection–diffusion equations, Numerical Algorithms, 80(4), 2019,1329-1359.
[2] Y.Cheng, Q.Zhang, H.J.Wang, Local analysis of the local discontinuous Galerkin method with the generalized alternating numerical flux for two-dimensional singularly perturbed problem, International Journal of numerical analysis and modeling, 15(6), 2018, 785-810.
[3] Y.Cheng, X.Meng, Q.Zhang, Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations,
Mathematics of Computation, 86(305), 2017, 1233-1267.
[4] Y.Cheng, Q.Zhang, Local analysis of local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularly perturbed problem, Journal of Scientific Computing, 72(2), 2017, 792-819.
[5] Y.Cheng, Q.Zhang, Local analysis of the fully discrete local discontinuous Galerkin method for the time-dependent singularly perturbed problem, Journal of Computational Mathematics, 35(3), 2017, 265-288.
[6] Y.Cheng, F.Zhang, Q.Zhang, Local analysis of local discontinuous Galerkin method for the time-dependent singularly perturbed problem, Journal of Scientific Computing, 63(2), 2015, 452-477.

相关热点

扫码添加好友