余德平
近期热点
资料介绍
个人简历
教育背景2002.09-2006.07:四川大学机械设计制造及自动化专业 学士2006.09-2009.06:四川大学机械电子工程专业 硕士2007.08-2011.08:新加坡国立大学机械工程专业 博士工作经历2011.09-2012.03:新加坡国立大学机械工程学院 研究工程师2012.04-2017.08:四川大学制造科学与工程学院 副教授2017.09-至 今:四川大学机械工程学院 教授担任四川大学机械工程学院副院长,先后入选四川省“特聘专家”、四川省学术和技术带头人后备人选、四川大学“双百B”人才计划,获四川大学“优秀教师”、“十佳青年教师教学奖”、“五粮春优秀青年教师教学奖”、“青年骨干教师”、“探究式—小班化教学竞赛二等奖”、“全英文授课教学质量优秀奖”等荣誉称号。主要从事先进制造技术及智能装备(等离子体制造技术、精密及超精密加工技术、制造过程智能诊断与预测)方面的研究。主持国家自然科学基金面上项目和青年基金各1项、四川省科技厅重点研发项目2项、中国工程物理研究院超精密加工重点实验室重点项目1项、医工融合创新项目3项、企业委托项目10余项。在《International Journal of Machine Tools and Manufacture》、《Journal of Materials Processing Technology》、《International Journal of Advanced Manufacturing Technology》、《International Journal of Heat and Mass Transfer》和《Plasma Chemistry and Plasma Processing》等国内外有影响力的期刊和会议论文中发表论文70余篇(SCI 检索45篇、EI检索60篇),国际会议最佳论文1篇,SCI他引700余次。获授权中国发明专利9项、实用新型专利10余项。开设课程本科:《微机原理及接口技术》、《新生研讨课》研究生:《计算机控制及接口技术(全英文)》、《学术规范与论文写作》、《微纳米加工技术》在研项目:(1) 四川省科技厅高新技术领域重点研发项目,3D打印用高熔点球形粉末等离子体球化制备技术和装备研究,负责人(2) 国家自然科学基金面上项目,织构化热处理显著提高金属接触表面服役寿命的强化机理及方法研究,负责人(3) 特种陶瓷涂层材料及等离子体喷涂技术研发中心,负责人(4) 四川省科技厅高新技术及产业化重点项目,等离子体高温熔融裂解危险废弃物关键技术及装备开发,负责人(5) 苯基高沸物等离子体裂解处理技术及装备开发,负责人(6) 中物院超精密加工重点实验室开放重点项目,硬脆材料复合曲面主动调制超精密车削加工关键技术研究,负责人(7) 国家自然科学基金青年项目,基于主动调制车削的硬脆材料微结构曲面延性域加工方法研究,负责人(8) 企业委托项目,金属棒、丝加热熔融用等离子体炬研制,负责人(9) 企业委托项目,射频等离子体发生装置开发,负责人(10) 企业委托项目,危险废弃物等离子体裂解处理装备,负责人授权专利[1] 余德平,邱吉尔,段亚洲,等. 一种电弧等离子体表面织构化热处理强化工艺方法[P]. 201810032658.9. [2019年10月11日].[2] 余德平,黄缤鸿,姚进,等. 一种钢轨表面硬化处理的等离子体加工装置[P]. 201710651167.8. 2018-01-23.[3] 余德平,向勇,刘洋,等. 一种钢轨表面在线式等离子硬化装置[P]. 2017.1.25, 201610563769.3. 2017-08-22.[4] 余德平,黄玮海,张敏,等. 一种超声椭圆振动切削装置的设计方法[P]. 201610758914.3. 2016-12-21.[5] 向勇,余德平,曹修全,等. 一种电弧等离子体对离线铁轨淬火的工艺方法及装置[P]. 201510927763.5. 2016-03-09.[6] 张永彬,姚进,余德平,等. 一种快速排气阀[P]. 201510197684.3. 2015-07-22.[7] 余德平,苗建国,曹修全,等. 一种用等离子技术进行弯管内表面处理的方法与设备[P]. 201410597276.2. 2015-01-28.研究领域
"先进制造技术及智能装备、等离子体技术及应用,故障诊断与健康管理(1) 等离子体制造技术及装备:电弧等离子体炬、射频等离子体炬、微波等离子体炬、冷等离子体等各类等离子体源的设计、诊断和调控;基于各类等离子体源的等离子体表面硬化处理、高性能球形金属粉末等离子体雾化、高熔点粉体等离子体球化、纳米材料等离子体气相合成、危险废弃物等离子体裂解等新原理、新技术和新装备。(2) 精密及超精密加工技术及装备:针对硬脆/难加工材料复合曲面的等离子体刻蚀加工、快速刀具伺服系统、超声振动切削加工、机器人辅助加工等。(3) 制造过程智能诊断和预测:针对各类制造装备开发基于信号处理、数据驱动和物理模型的智能故障诊断和健康管理系统。(4) 智能生物医疗器械:针对口腔、内科、影像、呼吸、康复等领域的智能生物医疗器械设计和开发。"近期论文
[1] Guo D, Zhang P, Jiang Y, Song C, Tan D, Yu D. Effects of surface texturing and laminar plasma jet surface hardening on the tribological behaviors of GCr15 bearing steel[J]. Tribology International. 2022: 107465.[2] Liu F, Yu D, Chen Y, Duan B, Yao J. A novel reverse-polarity plasma torch with extended hot-wall nozzle for atmospheric plasma spraying of dense yttria-stabilized zirconia coatings[J]. Surface and Coatings Technology. 2022, 437: 128366.[3] Tian H, Zhang P, Wu J, Xin Q, Yu D. A Prediction Method of the Removal Function for Inductively Coupled Atmospheric Pressure Plasma Processing Based on Jet Morphology Monitoring and Diagnosis[J]. Plasma Chemistry and Plasma Processing. 2022.[4] Yin Z, Yu D, Zhang Q, Yang S, Yang T. Experimental and Numerical Analysis of a Reverse-polarity Plasma Torch for Plasma Atomization[J]. Plasma Chemistry and Plasma Processing. 2021, 41: 1471-1495.[5] Guo D, Yu D, Zhang P, Song W, Zhang B, Peng K. Laminar plasma jet surface hardening of P20 mold steel: Analysis on the wear and corrosion behaviors[J]. Surface and Coatings Technology. 2021, 415: 127129.[6] Yang S, Yu D, Yang H, Feng Y, Liu X, Yin Z. Hybrid tool servo diamond turning of multiscale optical surface based on spectral separation of tool path[J]. The International Journal of Advanced Manufacturing Technology. 2021, 116(1): 145-157.[7] Liu X, Yu D, Chen D, Yang S, Wen Y, Xiao Y. Self-tuned ultrasonic elliptical vibration cutting for high-efficient machining of micro-optics arrays on brittle materials[J]. Precision Engineering. 2021, 72: 370-381.[8] Yin Z, Yu D, Wen Y, Zhang Q, Qiu J, Yang S. Numerical investigation on the flow characteristics of a reverse-polarity plasma torch by two-temperature thermal non-equilibrium modelling[J]. Plasma Science and Technology. 2021, 23: 95402.[9] Zhang P, Wu J, Tian H, Dong Y, Yu D. Morphology evolution of the light trapping structure using atmospheric plasma textured c-Si wafer for silicon solar cells[J]. Journal of Applied Physics. 2021, 130(2): 23105.[10] Dong Y, Long L, Zhang P, Yu D, Wen Y, Zheng Z, Wu J, Chen W. A chair-side plasma treatment system for rapidly enhancing the surface hydrophilicity of titanium dental implants in clinical operations[J]. Journal of Oral Science. 2021, 63(4): 334-340.[11] Zhang B, Yu D, Song W, Peng K, Wu G. The rolling-sliding wear behavior and damage mechanism of the rail steel treated by plasma selective quenching[J]. Surface and Coatings Technology. 2021, 428: 127908.[12] 余德平,张斌,宋文杰,郭达,彭科铭. 钢轨钢的层流等离子体束表面淬火过程仿真模型[J]. 工程科学与技术. 2021, 53(6): 185-193.[13] Wu J, Zhang P, Yu D, Zhang S, Xin Q, Wan Y. Monitoring and Diagnosis of the Inductively Coupled Atmospheric Pressure Plasma Jet for Deterministic Optical Processing[J]. Optik. 2020, 214: 164815.[14] Guo D, Yu D, Zhang P, Duan Y, Zhang B, Zhong Y, Qiu J. Laminar plasma jet surface hardening of the U75V rail steel: Insight into the hardening mechanism and control scheme[J].Surface and Coatings Technology. 2020, 394: 125857.[15] Wu J, Zhang P, Yu D, Zhang S, Xin Q, Wan Y. Monitoring and Diagnosis of the Inductively Coupled Atmospheric Pressure Plasma Jet for Deterministic Optical Processing[J]. Optik. 2020: 164815.[16] 吕程,余德平,刘方圆,等. 分段式阳极等离子体发生器中双弧现象的研究[J]. 精密制造与自动化. 2019(02): 20-24.[17] 曹修全,余德平,李超,等. 层流等离子体发生器设计关键技术研究之大尺度分流现象[J]. 四川理工学院学报(自然科学版). 2019, 32(02): 30-35.[18] 段亚洲,余德平,邱吉尔,等. 织构化热处理对钢轨钢耐磨性和寿命的影响[J]. 表面技术. 2019, 48(11): 131-139.[19] Xiang Y, Yu D, Cao X, et al. Effects of thermal plasma surface hardening on wear and damage properties of rail steel[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2018, 232(7): 787-796.[20] Xiang Y, Yu D, Liu F, et al. Determining the heat flux distribution of laminar plasma jet impinging upon a flat surface: An indirect method using surface transformation hardening[J]. International Journal of Heat and Mass Transfer. 2018, 118: 879-889.[21] An C, Deng C, Miao J, et al. Investigation on the generation of the waviness errors along feed-direction on flycutting surfaces[J]. The International Journal of Advanced Manufacturing Technology. 2018.[22] 余德平,张敏,黄玮海,等. 基于有限元分析的超声椭圆振动切削装置设计[J]. 工程科学与技术. 2018, 50(02): 170-176.[23] 叶枫菲,余德平,万勇建,等. 基于变压力的CCOS光学研抛技术[J]. 光电工程. 2018, 45(04): 54-63.[24] Huang W, Yu D, Zhang M, et al. Predictive cutting force model for ductile-regime machining of brittle materials[J]. The International Journal of Advanced Manufacturing Technology. 2018, 98(1-4): 781-790.[25] Cao X, Yu D, Li C. Influences of the Arc Chamber Length on the Jet Characteristics of Laminar Plasma Torch[J]. IEEE Transactions on Plasma Science. 2018, 46(8): 3017-3021.[26] 江汇,余德平,吕程,等. 层流等离子体制备球形氧化铝粉末的实验研究[J]. 强激光与粒子束. 2018, 30(07): 30079002.[27] Liu F, Yu D, Lv C, et al. Experimental study on the jet characteristics of a steam plasma torch[J]. Plasma Science and Technology. 2018, 20(12): 125401.[28] Huang W, Yu D, Zhang X, et al. Ductile-regime machining model for ultrasonic elliptical vibration cutting of brittle materials[J]. Journal of Manufacturing Processes. 2018, 36: 68-76.[29] 曹巧双,余德平,徐继业,等. KDP晶体脆塑转变切削过程有限元仿真与实验研究[J]. 人工晶体学报. 2018, 47(08): 1512-1516.[30] Liu Y, Li D, Yu D, et al. Design of a Curved Surface Constant Force Mechanism[J]. Mechanics Based Design of Structures and Machines. 2017, 45(2): 160-172.[31] Miao J, Yu D, An C, et al. Investigation on the generation of the medium-frequency waviness error in flycutting based on 3D surface topography[J]. The International Journal of Advanced Manufacturing Technology. 2017, 90(1-4): 667-675.[32] Lu X, Zhao S, Yu D, et al. Pylon-Climber: a novel climbing assistive robot for pylon maintenance[J]. Industrial Robot: An International Journal. 2017, 44(1): 38-48.[33] Huang W, Yu D, Zhang M, et al. Analytical design method of a device for ultrasonic elliptical vibration cutting[J]. The Journal of the Acoustical Society of America. 2017, 141(2): 1238-1245.[34] Cao X, Yu D, Xiang Y, et al. Study on the ignition process of a segmented plasma torch[J]. Plasma Science and Technology. 2017, 19(7): 75404.[35] 曹修全,余德平,李超,等. 层流等离子体发生器设计关键技术研究之双弧现象[J]. 四川大学学报(工程科学版). 2017, 49(03): 223-226.[36] Cao X, Yu D, Xiao M, et al. Design and Characteristics of a Laminar Plasma Torch for Materials Processing[J]. Plasma Chemistry and Plasma Processing. 2016, 36(2): 693-710.[37] Cao X, Yu D, Xiang Y, et al. Influence of the gas injection angle on the jet characteristics of a non-transferred DC plasma torch[J]. Plasma Chemistry and Plasma Processing. 2016, 36(3): 881-889.[38] Liu Y, Yu D, Yao J. Design of an adjustable cam based constant force mechanism[J]. Mechanism and Machine Theory. 2016, 103: 85-97.[39] 曹修全,余德平,向勇,等. 等离子体发生器结构对热效率的影响研究[J]. 四川大学学报(工程科学版). 2016, 48(3): 178-181.[40] Cao X, Yu D, Xiang Y, et al. Influence of the Laminar Plasma Torch Construction on the Jet Characteristics[J]. Plasma Science and Technology. 2016, 18(7): 740-743.[41] 余德平,刘金光,黄玮海,等. 慢刀伺服变主轴转速车削非圆截面元件研究[J]. 四川大学学报(工程科学版). 2016, 48(06): 114-118.[42] 刘金光,余德平,黄玮海. 铝合金超声振动切削实验研究[J]. 机床与液压. 2016, 44(19): 25-28.[43] Miao J, Yu D, Cao X, et al. Experimental Study on the Characteristics of a Miniature Laminar Plasma Torch with Different Gas Flow Patterns[J]. Plasma Chemistry and Plasma Processing. 2015, 35(5): 879-893.[44] Xiang Y, Yu D, Li Q, et al. Effects of thermal plasma jet heat flux characteristics on surface hardening[J]. Journal of Materials Processing Technology. 2015, 226: 238-246.[45] Li Q, Li H, Yu D, et al. A novel continuously variable transmission with logarithmic disc generatrix[J]. Mechanism and Machine Theory. 2015, 93: 147-162.[46] 肖蒙,余德平,曹修全,等. 非转移弧等离子体射流稳定性研究[J]. 科学技术与工程. 2015, 15(36): 119-122.[47] Peng H, Yu D, Zhang X, et al. Fabrication of hollow nickel micro-spheres with high degree of hollowness by silicon powder-mixed spark erosion[J]. International Journal of Machine Tools and Manufacture. 2014, 85: 131-134.[48] 向勇,余德平,曹修全,等. 直流纯氮层流等离子体射流特性的实验研究[J]. 强激光与粒子束. 2014, 26(9): 26092005.[49] Zhong X, Yu D P, Wong Y S, et al. 3D dental biometrics: Alignment and matching of dental casts for human identification[J]. Computers in Industry. 2013, 64(9): 1355-1370.[50] Yu D P, Gan S W, Wong Y S, et al. Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces[J]. International Journal of Advanced Manufacturing Technology. 2012, 63(9-12): 1137-1152.[51] Yu D P, Hong G S, Wong Y S. Profile error compensation in fast tool servo diamond turning of micro-structured surfaces[J]. International Journal of Machine Tools and Manufacture. 2012, 52(1): 13-23.[52] Yu D P, Hong G S, Wong Y S. Integral Sliding Mode Control for Fast Tool Servo Diamond Turning of Micro-structured Surfaces[J]. International Journal of Automation Technology. 2011, 5(1): 4-10.[53] Yu D P, Wong Y S, Hong G S. Optimal selection of machining parameters for Fast Tool Servo Diamond Turning[J]. International Journal of Advanced Manufacturing Technology. 2011, 57(1-4): 85-99.[54] Yu D P, Zhong X, Wong Y S, et al. An automatic form error evaluation method for characterizing micro-structured surfaces[J]. Measurement Science and Technology. 2011, 22(1): 15105.[55] Yu D P, Wong Y S, Hong G S. A Novel Method for Determination of Subsurface Damage Depth in Diamond Turning of Brittle Materials[J]. International Journal of Machine Tools and Manufacture. 2011, 51(12): 918-927.[56] Yu D P, Wong Y S, Hong G S. Ultraprecision machining of micro-structured functional surfaces on brittle materials[J]. Journal of micromechanics and microengineering. 2011, 21(9): 95011.[57] 余德平,王宝强,史延枫,等. 运用小波变换检测汽车后桥总成故障[J]. 振动,测试与诊断. 2009, 29(3): 356-361.[58] Huang W, Yu D, Chen D, et al. Investigation of variable spindle speed in slow tool servo-based turning of noncircular optical components: AOMATT 2016: Advanced Optical Manufacturing Technologies[Z]. Suzhou, China: 2016.[59] Yu D P, Wong Y S, Hong G S. Ductile-Regime Machining for Fast Tool Servo Diamond Turning of Micro-Structured Surfaces on Brittle Materials[J]. Advanced Materials Research. 2012, 500: 333-338.[60] Yu D P, Gan S W, Wong Y S, et al. Design of a Fast tool servo based Diamond Turning Machine for Fabricating Micro-structured Surfaces[J]. Key Engineering Materials. 2010, 443: 669-674.[61] Yu D P, Wong Y S, Hong G S. Automatic Surface Characterization for Micro-Structured Surfaces Fabricated by Fast Tool Servo Diamond Turning[J]. Key Engineering Materials. 2010, 447-448: 534-538.[62] Yu D P, Gan S W, Wong Y S, et al. An Optimization Approach for Tool Path Generation of Micro-structured Surfaces in FTS-based Diamond Turning[C]. Kitakyushu, Japan: 2009. 相关热点
最新收录
- 生野光 (生野ひかる Hika 06-14
- 乙都咲乃 (乙都さきの S 06-14
- 工藤丽华 (工藤れいか R 06-14
- 川原香苗 (川原かなえ K 06-14
- 滝口理奈 (滝口りな Rina 06-14
- 枫夏希(楓なつき Natsuki 06-14
- 堇潤 (すみれ潤 Jun Sumire 06-14
- 佐野结菜 (佐野ゆいな Y 06-14
- 佐藤白音 (さとう白音 S 06-14
- 丘惠理奈 (丘えりな Oka 06-14