蒋靖坤
近期热点
资料介绍
个人简历
教育背景\r2004 – 2008 圣路易斯华盛顿大学能源环境与化学工程系,博士\r2002 – 2004 清华大学环境科学与工程系,硕士\r1998 – 2002 清华大学环境科学与工程系,学士\r\r工作履历\r2017-至今 清华大学环境学院 长聘教授\r2010-2016 清华大学环境学院 副研究员、准聘副教授、长聘副教授\r2008 -2010 明尼苏达大学机械工程系,博士后\r\r学术兼职\r2021 – 至今 Editorial Board, Results in Engineering\r2020 – 至今 Editorial Board, Environmental Science & Technology Letters\r2019 – 至今 Editorial Board, Environmental Research\r2016 – 至今 Editor, Aerosol Science and Technology\r2016 – 至今 环境模拟与污染控制国家重点联合实验室清华分室主任\r2017 – 2018 Technical Program Committee, 2018 International Aerosol Conference\r2017 – 2020 Guest editor, Atmospheric Chemistry & Physics\r2016 – 2019 Editorial Board, Journal of Aerosol Science\r\r\r奖励与荣誉\r2020,ES&T Letters Excellence in Review Award\r2020,教育部长江学者特聘教授\r2019,中国化学会青年环境化学奖\r2019,清华大学青年教师教学优秀奖\r2019,清华大学先进工作者\r2018,Smoluchowski Award\r2017、2018、2019, 清华大学年度教学优秀奖\r2016,教育部青年长江学者\r2016,北京市科技进步一等奖\r2016,国家环境保护专业技术青年拔尖人才\r2016,清华大学2015届&2016届毕业生心目中的好教师\r2015,Asian Young Aerosol Scientist Award\r2015,国家科技进步二等奖\r2014,“万人计划”青年拔尖人才\r2014,国家优秀青年科学基金\r2014,教育部科技进步一等奖\r2014,北京市科技新星\r2012,清华大学第五届青年教师教学大赛二等奖(理工组)\r2009,A&WMA Dissertation Award\r2002,清华大学优良毕业生研究领域
"大气污染与控制、气溶胶科学与技术、颗粒物测量和成因"近期论文
2022\r\rSecondary organic aerosol formed by condensing anthropogenic vapours over China's megacitiesNie, W.; Yan, C.; Huang, D. D.; Wang, Z.; Liu, Y.; Qiao, X.; Guo, Y.; Tian, L.; Zheng, P.; Xu, Z.; Li, Y.; Xu, Z.; Qi, X.; Sun, P.; Wang, J.; Zheng, F.; Li, X.; Yin, R.; Dallenbach, K. R.; Bianchi, F.; Pet?j?, T.; Zhang, Y.; Wang, M.; Schervish, M.; Wang, S.; Qiao, L.; Wang, Q.; Zhou, M.; Wang, H.; Yu, C.; Yao, D.; Guo, H.; Ye, P.; Lee, S.; Li, Y. J.; Liu, Y.; Chi, X.; Kerminen, V.-M.; Ehn, M.; Donahue, N. M.; Wang, T.; Huang, C.; Kulmala, M.; Worsnop, D.;?Jiang*, J.; Ding*, A.Nature Geoscience, 2022, 15: 255-261\r\rMeasuring size distributions of atmospheric aerosols using natural air ionsLi, Y.; X. Chen;?J. Jiang*Aerosol Science and Technology, 2022, 56: 655-664\r\rToxic potency-adjusted control of air pollution for solid fuel combustionWu, D.; H. Zheng; Q. Li; L. Jin; R. Lyu; X. Ding; Y. Huo; B. Zhao;?J. Jiang;J. Chen; X. Li; S. WangNature Energy, 2022, 7: 194-202\r\rApplication of smog chambers in atmospheric process studiesChu, B.; T. Chen; Y. Liu; Q. Ma; Y. Mu; Y. Wang; J. Ma; P. Zhang; J. Liu; C. Liu; H. Gui; R. Hu; B. Hu; X. Wang; Y. Wang; J. Liu; P. Xie; J. Chen; Q. Liu;?J. Jiang; J. Li; K. He; W. Liu; G. Jiang; J. Hao; H. HeNational Science Review, 2022, 9: nwab103\r\rInsufficient condensable organic vapors lead to slow growth of new particles in an urban environmentLi, X.; Li, Y.; Cai, R.; Yan, C.; Qiao, X.; Guo, Y.; Deng, C.; Yin, R.; Chen, Y.; Li, Y.; Yao, L.; Sarnela, N.; Zhang, Y.; Pet?j?, T.; Bianchi, F.; Liu, Y.; Kulmala, M.; Hao, J.; Smith*, J. N.;?Jiang*, JEnviron. Sci. & Technol., 2022, doi: 10.1021/acs.est.2c01566\r\rVariations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019Hu, R.; S. Wang; H. Zheng; B. Zhao; C. Liang; X. Chang; Y. Jiang; R. Yin;?J. Jiang; J. HaoEnviron. Sci. & Technol., 2022, doi: 10.1021/acs.est.1021c05125\r\rEmissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving ConditionsYang, D.; S. Zhu; Y. Ma; L. Zhou; F. Zheng; L. Wang;?J. Jiang; J. ZhengEnviron. Sci. & Technol., 2022, 56: 5440-5447\r\rMeasurement of atmospheric nanoparticles: Bridging the gap between gas-phase molecules and larger particlesPeng, C.; C. Deng; T. Lei; J. Zheng; J. Zhao; D. Wang; Z. Wu; L. Wang; Y. Chen; M. Liu;?J. Jiang; A. Ye; M. Ge; W. WangJ Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.006\r\rSuggestion on further strengthening ultra-low emission standards for PM emission from coal-fired power plants in ChinaDeng, J.; S. Wang; J. Zhang;Y. Zhang;?J. Jiang; Y. Gu; T. Han; L. Feng; J. Gao; L. DuanJ Environ. Sci., 2022, doi: 10.1016/j.jes.2022.03.007\r\rThe contribution of new particle formation and subsequent growth to haze formationKulmala, M.; R. Cai; D. Stolzenburg; Y. Zhou; L. Dada; Y. Guo; C. Yan; T. Pet?j?;?J. Jiang; V.-M. KerminenEnvironmental Science: Atmospheres, 2022, 2: 352-361\r\rDetecting residual chemical disinfectant using an atomic Co–Nx–C anchored neuronal-like carbon catalyst modified amperometric sensorLi, Z.; G. Jiang; Y. Wang; M. Tan; Y. Cao; E. Tian; L. Zhang; X. Chen; M. Zhao; Y. Jiang; Y. Luo; Y. Zheng; Z. Ma; D. Wang; W. Fu; K. Liu; C. Tang*;?J. Jiang*Environ. Sci.: Nano, 2022, 9: 1759-1769\r\rLarge contribution of non-priority PAHs in atmospheric fine particles: Insights from time-resolved measurement and nontarget analysisAn, Z.; X. Li; Y. Yuan; F. Duan;?J. Jiang*Environment International, 2022, 163: 107193\r\rThe pathway of impacts of aerosol direct effects on secondary inorganic aerosol formationWang, J.; Xing, J.; Wang, S.; Mathur, R.; Wang, J.; Zhang, Y.; Liu, C.; Pleim, J.; Ding, D.; Chang, X.;?Jiang, J.; Zhao, P.; Sahu, S. K.; Jin, Y.; Wong, D. C.; Hao, JAtmos. Chem. Phys., 2022, 22: 5147-5156\r\rObserved coupling between air mass history, secondary growth of nucleation mode particles and aerosol pollution levels in BeijingHakala, S.; V. Vakkari; F. Bianchi; L. Dada; C. Deng; K. R. D?llenbach; Y. Fu;?J. Jiang; J. Kangasluoma; J. Kujansuu; Y. Liu; T. Pet?j?; L. Wang; C. Yan; M. Kulmala; P. PaasonenEnvironmental Science: Atmospheres, 2022, 2: 146-164\r\rEcological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious DiseasesZhang, D.; Y. Yang; M. Li; Y. Lu; Y. Liu;?J. Jiang; R. Liu; J. Liu; X. Huang; G. Li; J. QuEngineering, 2022, 10: 155-166\r\rSignificant Contribution of Coarse Black Carbon Particles to Light Absorption in North China PlainWang, J.; S. Wang; J. Wang; Y. Hua; C. Liu; J. Cai; Q. Xu; X. Xu; S. Jiang; G. Zheng;?J. Jiang; R. Cai; W. Zhou; G. Chen; Y. Jin; Q. Zhang; J. HaoEnvironmental Science & Technology Letters, 2022, 9(2): 134-139\r\rDynamic variations of phthalate esters in PM2.5?during a pollution episodeLi, X.; Z. An; Y. Shen; Y. Yuan; F. Duan;?J. Jiang*Science of The Total Environment, 2022, 810: 152269\r\rAn online technology for effectively monitoring inorganic condensable particulate matter emitted from industrial plantsLiu, A.; J. Yi; X. Ding; J. Deng; D. Wu; Y. Huo;?J. Jiang; Q. Li; J. ChenJournal of Hazardous Materials, 2022, 428: 128221\r\rCr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High SelectivityZhang, J.; F. Lv; Z. Li*; G. Jiang; M. Tan; M. Yuan; Q. Zhang; Y. Cao; H. Zheng; L. Zhang; C. Tang; W. Fu; C. Liu; K. Liu; L. Gu;?J. Jiang*; G. Zhang*; S. Guo*Advanced Materials, 2022, 34(2): 2105276\r\rEvaluation of a cost-effective roadside sensor platform for identifying high emittersShen, Y.; Q. Zhang; D. Wang; M. Tian; Q. Yu; J. Wang; H. Yin; S. Zhang; J. Hao;?J. Jiang*Science of The Total Environment, 2022, 816: 151609\r\rTowards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clustersKulmala, M.; D. Stolzenburg; L. Dada; R. Cai; J. Kontkanen; C. Yan; J. Kangasluoma; L. R. Ahonen; L. Gonzalez-Carracedo; J. Sulo; S. Tuovinen; C. Deng; Y. Li; K. Lehtipalo; K. E. J. Lehtinen; T. Pet?j?; P. M. Winkler;?J. Jiang; V.-M. KerminenJournal of Aerosol Science, 2022, 159: 105878\r\rMolecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in BeijingWang*, Y.; P. Clusius; C. Yan; K. D?llenbach; R. Yin; M. Wang; X.-C. He; B. Chu; Y. Lu; L. Dada; J. Kangasluoma; P. Rantala; C. Deng; Z. Lin; W. Wang; L. Yao; X. Fan; W. Du; J. Cai; L. Heikkinen; Y. J. Tham; Q. Zha; Z. Ling; H. Junninen; T. Pet?j?; M. Ge; Y. Wang; H. He; D. R. Worsnop; V.-M. Kerminen; F. Bianchi; L. Wang;?J. Jiang*; Y. Liu*; M. Boy; M. Ehn; N. M. Donahue; M. Kulmala*Environmental Science & Technology, 2022, 56: 770-778\r\rEmission characteristics of heavy metals from a typical copper smelting plantZhang, J.; X. Sun; J. Deng; G. Li; Z. Li;?J. Jiang; Q. Wu; L. DuanJournal of Hazardous Materials, 2022, 424: 127311\r\r2021\r\rSulfuric acid-amine nucleation in urban BeijingCai, R.; C. Yan; D. Yang; R. Yin; Y. Lu; C. Deng; Y. Fu; J. Ruan; X. Li; J. Kontkanen; Q. Zhang; J. Kangasluoma; Y. Ma; J.M. Hao; D.R. Worsnop; F. Bianchi; P. Paasonen; V.M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala;?J. Jiang*Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468\r\rAcid–Base Clusters during Atmospheric New Particle Formation in Urban BeijingYin, R.; C. Yan; R. Cai; X. Li; J. Shen; Y. Lu; S. Schobesberger; Y. Fu; C. Deng; L. Wang; Y. Liu; J. Zheng; H. Xie; F. Bianchi; D. R. Worsnop; M. Kulmala;?J. Jiang*Environmental Science & Technology, 2021, 55: 10994-11005\r\rContribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban EnvironmentQiao, X.; C. Yan*; X. Li; Y. Guo; R. Yin; C. Deng; C. Li; W. Nie; M. Wang; R. Cai; D. Huang; Z. Wang; L. Yao; D. R. Worsnop; F. Bianchi; Y. Liu; N. M. Donahue; M. Kulmala;?J. Jiang*Environmental Science & Technology, 2021, 55: 13646-13656\r\rParticle growth with photochemical age from new particle formation to haze in the winter of Beijing, ChinaChu, B.; L. Dada; Y. Liu; L. Yao; Y. Wang; W. Du; J. Cai; K. R. D?llenbach; X. Chen; P. Simonen; Y. Zhou; C. Deng; Y. Fu; R. Yin; H. Li; X.-C. He; Z. Feng; C. Yan; J. Kangasluoma; F. Bianchi;?J. Jiang; J. Kujansuu; V.-M. Kerminen; T. Pet?j?; H. He; M. KulmalaScience of The Total Environment, 2021, 753: 142207\r\rFormation and growth of sub-3nm particles in megacities: impact of background aerosolsDeng, C.; R. Cai; C. Yan; J. Zheng;?J. Jiang*Faraday discussions, 2021, 226: 348-363\r\rBioaerosol: A Key Vessel between Environment and HealthJiang, J.; M. Yao; J. Hwang ; C. WangFrontiers of Environmental Science & Engineering, 2021, 15(3): 49\r\rAn indicator for sulfuric acid–amine nucleation in atmospheric environmentsCai, R.; C. Yan; D. R. Worsnop; F. Bianchi; V.-M. Kerminen; Y. Liu; L. Wang; J. Zheng; M. Kulmala;?J. Jiang*Aerosol Science and Technology, 2021, 55: 1059-1069\r\rComposition of Ultrafine Particles in Urban Beijing: Measurement Using a Thermal Desorption Chemical Ionization Mass SpectrometerLi, X.; Y. Li; M.J. Lawler; J. Hao; J. Smith*;?J. Jiang*Environmental science & technology, 2021, 55(5): 2859-2868\r\rTracing the origins of SARS-CoV-2: lessons learned from the pastWang, Q.; H. Chen; Y. Shi; A. C. Hughes; W. J. Liu;?J. Jiang; G. F. Gao; Y. Xue; Y. TongCell Research, 2021, 31: 1139-1141\r\rSARS-CoV-2 spillover into hospital outdoor environmentsZhang, D.; X. Zhang; Y. Yang; X. Huang;?J. Jiang; M. Li; H. Ling; J. Li;Y. Liu; G. Li; W. Li; C. Yi; T. Zhang; Y. Jiang; Y. Xiong; Z. He; X. Wang; S. Deng; P. Zhao; J. QuJournal of Hazardous Materials Letters, 2021, 2: 100027\r\rChronic Exposure to PM2.5?Nitrate, Sulfate, and Ammonium Causes Respiratory System Impairments in MiceZhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; S. Zhang; X. Song; Y. Zhou; J. Chen;?J. Jiang; L. Fan; C. Wang; K. HaoEnvironmental science & technology, 2021, 55(5): 3081-3090\r\rRevealing consensus gene pathways associated with respiratory functions and disrupted by PM2.5?nitrate exposure at bulk tissue and single cell resolutionZhang, J.; H. Cheng; D. Wang; Y. Zhu; C. Yang; Y. Shen; J. Yu; Y. Li; S. Xu; X. Song; Y. Zhou; J. Chen; L. Fan;?J. Jiang; C. Wang; K. HaoEnvironmental Pollution, 2021, 280: 116951\r\rImproving data reliability: A quality control practice for low-cost PM2.5?sensor networkQiao, X.; Q. Zhang; D. Wang; J. Hao;?J. Jiang*Science of The Total Environment, 2021, 779: 146381\r\rThe Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in BeijingYan, C.; R. Yin; Y. Lu; L. Dada; D. Yang; Y. Fu; J. Kontkanen; C. Deng; O. Garmash; J. Ruan; R. Baalbaki; M. Schervish; R. Cai; M. Bloss; T. Chan; T. Chen; Q. Chen; X. Chen; Y. Chen; B. Chu; K. D?llenbach; B. Foreback; X. He; L. Heikkinen; T. Jokinen; H. Junninen; J. Kangasluoma; T. Kokkonen; M. Kurppa; K. Lehtipalo; H. Li; H. Li; X. Li; Y. Liu; Q. Ma; P. Paasonen; P. Rantala; R.E. Pileci; A. Rusanen; N. Sarnela; P. Simonen; S. Wang; W. Wang; Y. Wang; M. Xue; G. Yang; L. Yao; Y. Zhou; J. Kujansuu; T. Pet?j?; W. Nie; Y. Ma; M. Ge; H. He; N.M. Donahue; D.R. Worsnop; V.-M. Kerminen; L. Wang; Y. Liu*; J. Zheng*; M. Kulmala*;?J. Jiang*; F. Bianchi*Geophysical Research Letters, 2021, 48(7): e2020GL091944\r\rIs reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?Kulmala, M.; L. Dada; K.R. Daellenbach; C. Yan; D. Stolzenburg; J. Kontkanen; E. Ezhova; S. Hakala; S. Tuovinen; T.V. Kokkonen; M. Kurppa; R. Cai; Y. Zhou; R. Yin; R. Baalbaki; T. Chan; B. Chu; C. Deng; Y. Fu; M. Ge; H. He; L. Heikkinen; H. Junninen; Y. Liu; Y. Lu; W. Nie; A. Rusanen; V. Vakkari; Y. Wang; G. Yang; L. Yao; J. Zheng; J. Kujansuu; J. Kangasluoma; T. Petaja; P. Paasonen; L. Jarvi; D. Worsnop; A. Ding; Y. Liu; L. Wang;?J. Jiang; F. Bianchi; V.-M. KerminenFaraday discussions, 2021, 226: 334-347\r\rImpacts of coagulation on the appearance time method for new particle growth rate evaluation and their correctionsCai, R.; C. Li; X.-C. He; C. Deng; Y. Lu; R. Yin; C. Yan; L. Wang;?J. Jiang; M. Kulmala; J. KangasluomaAtmospheric Chemistry and Physics, 2021, 21(3): 2287-2304\r\rFrontier review on comprehensive two-dimensional gas chromatography for measuring organic aerosolAn, Z.; X. Li; Z. Shi; B.J. Williams; R.M. Harrison;?J. Jiang*Journal of Hazardous Materials Letters, 2021, 2: 100013\r\rGeneral discussion: Aerosol formation and growth; VOC sources and secondary organic aerosolsAlam, M.S.; W. Bloss; J. Brean; P. Brimblecombe; C. Chan; Y. Chen; H. Coe; P. Fu; S. Gani; J. Hamilton; R. Harrison;?J. Jiang; M. Kulmala; L. Lugon; G. McFiggans; A. Mehra; A. Milsom; B. Nelson; C. Pfrang; K. Sartelet; Z. Shi; D. Srivastava; G. Stewart; P. Styring; H. Su; D. van Pinxteren; E. Velasco; J.Z. YuFaraday discussions, 2021, 226: 479-501\r\rInvestigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materialsLi, Z.; Y. Yuan; H. Wu; X. Li; M. Yuan; H. Wang; X. Wu; S. Liu; X. Zheng; M. Kim; H. Zheng; S. Rehman; G. Jiang; W. Fu;?J. Jiang*Journal of Hazardous Materials, 2021, 411: 125034\r\r2020\r\rSeasonal Characteristics of New Particle Formation and Growth in Urban BeijingDeng, C.; Y. Fu; L. Dada; C. Yan; R. Cai; D. Yang; Y. Zhou; R. Yin; Y. Lu; X. Li; X. Qiao; X. Fan; W. Nie; J. Kontkanen; J. Kangasluoma; B. Chu; A. Ding; V.-M. Kerminen; P. Paasonen; D.R. Worsnop; F. Bianchi; Y. Liu; J. Zheng; L. Wang; M. Kulmala*;?J. Jiang*Environmental Science & Technology, 2020, 54: 8547-8557\r\rQuantifying the Deposition of Airborne Particulate Matter Pollution on Skin Using Elemental MarkersMorgan, J.L.L.; A. Shauchuk; J.L. Meyers; A. Altemeier; X.H. Quo; M. Jones; E.D. Smith;?J. JiangEnvironmental Science & Technology, 2020, 54(24): 15958-15967\r\rAir pollutant emissions from coal-fired power plants in China over the past two decadesWang, G.; J. Deng; Y. Zhang; Q. Zhang; L. Duan; J. Hao;?J. Jiang*Science of The Total Environment, 2020, 741: 140326\r\rThree-dimensional tomography reveals distinct morphological and optical properties of soot aggregates from coal-fired residential stoves in ChinaZhang, C.; W.R. Heinson; P. Liu; P. Beeler; Q. Li;?J. Jiang; R.K. ChakrabartyJournal of Quantitative Spectroscopy and Radiative Transfer, 2020, 254: 107184\r\rUnprecedented Ambient Sulfur Trioxide (SO3) Detection: Possible Formation Mechanism and Atmospheric ImplicationsYao, L.; X.L. Fan; C. Yan; T. Kurten; K.R. Daellenbach; C. Li; Y.H. Wang; Y.S. Guo; L. Dada; M.P. Rissanen; J. Cai; Y.J. Tham; Q.Z. Zha; S.J. Zhang; W. Du; M. Yu; F.X. Zheng; Y. Zhou; J. Kontkanen; T. Chan; J.L. Shen; J.T. Kujansuu; J. Kangasluoma;?J. Jiang; L. Wang; D.R. Worsnop; T. Petaja; V.M. Kerminen; Y.C. Liu; B.W. Chu; H. He; M. Kulmala; F. BianchiEnvironmental Science & Technology Letters, 2020, 7(11): 809-818\r\rA Sampler for Collecting Fine Particles into Liquid SuspensionsWang, D.;?J. Jiang; J. Deng; Y. Li; J. HaoAerosol and Air Quality Research, 2020, 20(3): 654-662\r\rInvestigating the effectiveness of condensation sink based on heterogeneous nucleation theoryTuovinen, S.; J. Kontkanen;?J. Jiang; M. KulmalaJournal of Aerosol Science, 2020, 149: 105613\r\rSize-Resolved Chemical Composition of Sub-20 nm Particles from Methanesulfonic Acid Reactions with Methylamine and AmmoniaPerraud, V.; X. Li;?J. Jiang; B.J. Finlayson-Pitts; J.N. SmithACS Earth and Space Chemistry, 2020, 4(7): 1182-1194\r\rUltrasonication to reduce particulate matter generated from bursting bubbles: A case study on zinc electrolysisMa, Z.;?J. Jiang; L. Duan; Z. Li; J. Deng; J. Li; R. Zhang; C. Zhou; F. Xu; L. Jiang; N. DuanJournal of Cleaner Production, 2020, 272: 122697\r\rContribution of hydroxymethanesulfonate (HMS) to severe winter haze in the North China PlainMa, T.; H. Furutani; F. Duan; T. Kimoto;?J. Jiang; Q. Zhang; X. Xu; Y. Wang; J. Gao; G. Geng; M. Li; S. Song; Y. Ma; F. Che; J. Wang; L. Zhu; T. Huang; M. Toyoda; K. HeAtmos. Chem. Phys., 2020, 20(10): 5887-5897\r\rContinuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environmentLiu, Y.; C. Yan; Z. Feng; F. Zheng; X. Fan; Y. Zhang; C. Li; Y. Zhou; Z. Lin; Y. Guo; Y. Zhang; L. Ma; W. Zhou; Z. Liu; L. Dada; K. D?llenbach; J. Kontkanen; R. Cai; T. Chan; B. Chu; W. Du; L. Yao; Y. Wang; J. Cai; J. Kangasluoma; T. Kokkonen; J. Kujansuu; A. Rusanen; C. Deng; Y. Fu; R. Yin; X. Li; Y. Lu; Y. Liu; C. Lian; D. Yang; W. Wang; M. Ge;Y. Wang; D.R. Worsnop; H. Junninen; H. He; V.-M. Kerminen; J. Zheng; L. Wang;?J. Jiang; T. Pet?j?; F. Bianchi; M. KulmalaBig Earth Data, 2020, 4(3): 295-321\r\rResponses of gaseous sulfuric acid and particulate sulfate to reduced SO2?concentration: A perspective from long-term measurements in BeijingLi, X.X.; B. Zhao; W. Zhou; H.R. Shi; R.J. Yin; R.L. Cai; D.S. Yang; K. Dallenbach; C.J. Deng; Y.Y. Fu; X.H. Qiao; L. Wang; Y.C. Liu; C. Yan; M. Kulmala; J. Zheng; J.M. Hao; S.X. Wang;?J. Jiang*Science of the Total Environment, 2020, 721: 9\r\rWintertime Particulate Matter Decrease Buffered by Unfavorable Chemical Processes Despite Emissions Reductions in ChinaLeung, D.M.; H. Shi; B. Zhao; J. Wang; E.M. Ding; Y. Gu; H. Zheng; G. Chen; K.-N. Liou; S. Wang; J.D. Fast; G. Zheng;?J. Jiang; X. Li; and J.H. JiangGeophysical Research Letters, 2020, 47: e2020GL087721\r\rSize-resolved particle number emissions in Beijing determined from measured particle size distributionsKontkanen, J.; C. Deng; Y. Fu; L. Dada; Y. Zhou; J. Cai; K.R. Daellenbach; S. Hakala; T.V. Kokkonen; Z. Lin; Y. Liu; Y. Wang; C. Yan; T. Pet?j?;?J. Jiang; M. Kulmala; P. PaasonenAtmos. Chem. Phys., 2020, 20: 11329-11348\r\rOverview of measurements and current instrumentation for 1–10 nm aerosol particle number size distributionsKangasluoma, J.; R. Cai;?J. Jiang; C. Deng; D. Stolzenburg; L.R. Ahonen;T. Chan; Y. Fu; C. Kim; T.M. Laurila; Y. Zhou; L. Dada; J. Sulo; R.C. Flagan; M. Kulmala; T. Pet?j?; K. LehtipaloJournal of Aerosol Science, 2020, 148: 105584\r\rTransmission via aerosols: Plausible differences among emerging coronavirusesJiang*, J.; Y. Vincent Fu; L. Liu; M. KulmalaAerosol Science and Technology, 2020, 54: 865-868\r\rChemical characteristics and sources of water-soluble organic aerosol in southwest suburb of BeijingHu, R.; Q. Xu; S. Wang; Y. Hua; N. Bhattarai;?J. Jiang; Y. Song; K.R. Daellenbach; L. Qi; A.S.H. Prevot; J. HaoJournal of Environmental Sciences, 2020, 95: 99-110\r\rSources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculationsDada, L.; I. Ylivinkka; R. Baalbaki; C. Li; Y. Guo; C. Yan; L. Yao; N. Sarnela; T. Jokinen; K.R. Daellenbach; R. Yin; C. Deng; B. Chu; T. Nieminen; Y. Wang; Z. Lin; R.C. Thakur; J. Kontkanen; D. Stolzenburg; M. Sipil?, T. Hussein; P. Paasonen; F. Bianchi; I. Salma; T. Weidinger; M. Pikridas; J. Sciare;?J. Jiang; Y. Liu; T. Pet?j?; V.M. Kerminen; M. KulmalaAtmos. Chem. Phys., 2020, 20: 11747-11766\r\rComprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosolsAn, Z.; H. Ren; M. Xue; X. Guan;?J. Jiang*Journal of Chromatography A, 2020, 1625: 461336\r\rEvaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in ChinaWang, G.; Deng, J.; Zhang, Y.; Li, Y.; Ma, Z.; Hao, J.;?Jiang*, JEnvironmental Science & Technology, 2020, 54: 1363-1371\r\rSignificant ultrafine particle emissions from residential solid fuel combustionWang, D.; Li, Q.; Shen, G.; Deng, J.; Zhou, W.; Hao, J.;?Jiang*, JScience of The Total Environment, 2020, 715, 136992\r\rModels for estimating nanoparticle transmission efficiency through an adverse axial electric fieldCai, R;?J. Jiang*Aerosol Science and Technology, 2020, 54: 332-341\r\rTransmission of charged nanoparticles through the DMA adverse axial electric field and its improvementCai, R.; Y. Zhou;?J. Jiang*Aerosol Science and Technology, 2020, 54: 21-32\r\rA Cost-effective, Miniature Electrical Ultrafine Particle Sizer (mini- eUPS) for Ultrafine Particle (UFP) Monitoring NetworkLiu, Q.; D. Liu; X. Chen; Q. Zhang;?J. Jiang; D.-R. ChenAerosol and Air Quality Research, 2020, 20: 231-241\r\rVariation of size-segregated particle number concentrations in wintertime BeijingZhou, Y.; Dada, L.; Liu, Y.; Fu, Y.; Kangasluoma, J.; Chan, T.; Yan, C.; Chu, B.; Daellenbach, K. R.; Bianchi, F.; Kokkonen, T. V.; Liu, Y.; Kujansuu, J.; Kerminen, V. M.; Pet?j?, T.; Wang, L.;?Jiang, J.; Kulmala, MAtmospheric Chemistry and Physics, 2020, 20: 1201-1216\r\rChina's emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5?concentrations in Beijing since 2002Gao, M.; Liu, Z.; Zheng, B.; Ji, D.; Sherman, P.; Song, S.; Xin, J.; Liu, C.; Wang, Y.; Zhang, Q.; Xing, J.;?Jiang, J.; Wang, Z.; Carmichael, G. R.; McElroy, M. B.Atmospheric Chemistry and Physics, 2020, 20: 1497-1505\r\rCobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen PeroxideLi, Z.; R. Liu; C. Tang; Z. Wang; X. Chen; Y. Jiang; C. Wang; Y. Yuan; W. Wang; D. Wang; S. Chen; X. Zhang; Q. Zhang;?J. Jiang*Small, 2020, 16: 1902860\r\r2019\r\rTheoretical and experimental analysis of the core sampling method: Reducing diffusional losses in aerosol sampling lineFu, Y.; M. Xue; R. Cai; J. Kangasluoma;?J. Jiang*Aerosol Science and Technology, 2019, 53: 793-801\r\rFew-layered mesoporous graphene for high-performance toluene adsorption and regenerationWang, Y.; Z. Li; C. Tang; H. Ren; Q. Zhang; M. Xue; J. Xiong; D. Wang; Q. Yu; Z. He; F. Wei;?J. Jiang*,Environmental Science: Nano, 2019, 6: 3113-3122\r\rA soft X-ray unipolar charger for ultrafine particlesChen, X.;?J. Jiang; D.-R. ChenJournal of Aerosol Science, 2019, 133: 66-71\r\rMaximizing the singly charged fraction of sub-micrometer particles using a unipolar chargerChen, X.;?J. Jiang; D.-R. ChenAerosol Science and Technology, 2019, 53: 990-997\r\rTime-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern ChinaCai, S.; L. Zhu; S. Wang; A. Wisthaler; Q. Li;?J. Jiang; J. HaoEnvironmental Science & Technology, 2019, 53: 9269-9278\r\rNitrate dominates the chemical composition of PM2.5?during haze event in Beijing, ChinaXu, Q.; S. Wang;?J. Jiang; N. Bhattarai; X. Li; X. Chang; X. Qiu; M. Zheng; Y. Hua; J. HaoScience of The Total Environment, 2019, 689: 1293-1303\r\rInteractions between aerosol organic components and liquid water content during haze episodes in BeijingLi, X.; S. Song; W. Zhou; J. Hao; D.R. Worsnop;?J. Jiang*Atmospheric Chemistry and Physics, 2019, 19: 12163-12174\r\rImproving thermal desorption aerosol gas chromatography using a dual-trap designRen, H.; M. Xue; Z. An;?J. Jiang*Journal of Chromatography A, 2019, 1599: 247-252\r\rQuartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosolsRen, H.; M. Xue; Z. An; W. Zhou;?J. Jiang*Journal of Chromatography A, 2019, 1589: 141-148\r\rRelative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidationLi, X.; S. Chee; J. Hao; J. P. D. Abbatt;?J. Jiang*; J. N. Smith*Atmospheric Chemistry and Physics, 2019, 19: 1555-1570\r\rCharacteristics of particulate matter from four coal-fired power plants with low-low temperature electrostatic precipitator in ChinaWang, G.; Z. Ma; J. Deng; Z. Li; L. Duan; Q. Zhang; J. Hao;?J. Jiang*Science of the Total Environment, 2019, 662: 455-461\r\rCharacteristics of Individual Particles Emitted from an Experimental Burning Chamber with Coal from the Lung Cancer Area of Xuanwei, ChinaWang, W.; L. Shao; J. Li; L. Chang; D. Zhang; C. Zhang;?J. JiangAerosol and Air Quality Research, 2019, 19: 355-36\r\rAirway microbiome is associated with respiratory functions and responses to ambient particulate matter exposureWang, L.; H. Cheng; D. Wang; B. Zhao; J. Zhang; L. Cheng; P. Yao; A. Di Narzo; Y. Shen; J. Yu; Y. Li; S. Xu; J. Chen; L. Fan; J. Lu;?J. Jiang; Y. Zhou; C. Wang; Z. Zhang; K. HaoEcotoxicology and Environmental Safety, 2019, 167: 269-277\r\rDevelopment and qualification of a VH-TDMA for the study of pure aerosolsOxford, C. R.; C. M. Rapp; Y. Wang; P. Kumar; D. Watson; J. L. Portelli; E. A. Sussman; S. Dhawan;?J. Jiang; B. J. WilliamsAerosol Science and Technology, 2019, 53: 120-132\r\rA proxy for atmospheric daytime gaseous sulfuric acid concentration in urban BeijingLu, Y.; C. Yan; Y. Fu; Y. Chen; Y. Liu; G. Yang; Y. Wang; F. Bianchi; B. Chu; Y. Zhou; R. Yin; R. Baalbaki; O. Garmash; C. Deng; W. Wang; Y. Liu; T. Petaja; V.-M. Kerminen;?J. Jiang; M. Kulmala; L. WangAtmospheric Chemistry and Physics, 2019, 19: 1971-1983\r\rAtomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysisLi, Z.; H. He; H. Cao; S. Sun; W. Diao; D. Gao; P. Lu; S. Zhang; Z. Guo; M. Li; R. Liu; D. Ren; C. Liu; Y. Zhang; Z. Yang;?J. Jiang; G. ZhangApplied Catalysis B: Environmental, 2019, 240: 112-121\r\rSignificant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized productsLi, Q.; J. Qi;?J. Jiang*; J. Wu*; L. Duan; S. Wang; J. HaoScience of the Total Environment, 2019, 650: 653-660\r\rBio(3)Air, an integrative system for monitoring individual-level air pollutant exposure with high time and spatial resolutionCheng, H.; L. Wang; D. Wang; J. Zhang; L. Cheng; P. Yao; Z. Zhang; A. Di Narzo; Y. Shen; J. Yu; C. Wang; L. Fan; J. Lu;?J. Jiang; K. HaoEcotoxicology and Environmental Safety, 2019, 169: 756-763\r\rParameters governing the performance of electrical mobility spectrometers for measuring sub-3 nm particlesCai, R.;?J. Jiang; S. Mirme; J. KangasluomaJournal of Aerosol Science, 2019, 127: 102-115\r\r2018\r\rCharacteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in ChinaWang, G.; J. Deng; Z. Ma; J. Hao;?J. Jiang*Science of the Total Environment, 2018, 639: 695-704\r\rContribution of Hydroxymethane Sulfonate to Ambient Particulate Matter: A Potential Explanation for High Particulate Sulfur During Severe Winter Haze in BeijingMoch, J. M.; E. Dovrou; L. J. Mickley; F. N. Keutsch; Y. Cheng; D. J. Jacob;?J. Jiang; M. Li; J. W. Munger; X. Qiao; Q. ZhangGeophysical Research Letters, 2018, 45: 11969-11979\r\rNitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxideLi, Z.; Y. Jiang; Z. Wang; W. Wang; Y. Yuan; X. Wu; X. Liu; M. Li; S. Dilpazir; G. Zhang; D. Wang; C. Liu;?J. Jiang*Microchimica Acta, 2018, 185:501\r\rEmerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detectionLi, Z.; Y. Jiang; C. Liu*; Z. Wang; Z. Cao; Y. Yuan; M. Li; Y. Wang; D. Fang; Z. Guo; D. Wang; G. Zhang;?J. Jiang*Environmental Science: Nano, 2018, 5: 1834-1843\r\rCharacteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, ChinaHua, Y.; S. Wang;?J. Jiang; W. Zhou; Q. Xu; X. Li; B. Liu; D. Zhang; M. ZhengScience of the Total Environment, 2018, 626: 519-527\r\rInsights into extinction evolution during extreme low visibility events: Case study of Shanghai, ChinaCheng, Z.; S. Wang; L. Qiao; H. Wang; M. Zhou; X. Fu; S. Lou; L. Luo;?J. Jiang; C. Chen; X. Wang; J. HaoScience of the Total Environment, 2018, 618: 793-803\r\rStationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometersChen, X.; P. H. McMurry;?J. Jiang*Aerosol Science and Technology, 2018, 52: 809-813\r\rPerformance of Small Plate and Tube Unipolar Particle Chargers at Low Corona CurrentChen, X.; Q. Liu;?J. Jiang; D.-R. ChenAerosol and Air Quality Research, 2018, 18: 2005-2013\r\rPerformance evaluation of a circular electrical aerosol classifier (CirEAC)Chen, X.; Q. Liu;?J. Jiang; D.-R. ChenJournal of Aerosol Science, 2018, 118: 100-110\r\rRetrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applicationsChen, X.;?J. Jiang*Aerosol Science and Technology, 2018, 52: 1145-1155\r\rData inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifierCai, R.; D. Yang; L. R. Ahonen; L. Shi; F. Korhonen; Y. Ma; J. Hao; T. Petaja; J. Zheng; J. Kangasluoma;?J. Jiang*Atmospheric Measurement Techniques, 2018, 11: 4477-4491\r\rEstimating the influence of transport on aerosol size distributions during new particle formation eventsCai, R.; I. Chandra; D. Yang; L. Yao; Y. Fu; X. Li; Y. Lu; L. Luo; J. Hao; Y. Ma; L. Wang; J. Zheng; T. Seto;?J. Jiang*Atmospheric Chemistry and Physics, 2018, 18: 16587-16599\r\rCharacterization of a high-resolution supercritical differential mobility analyzer at reduced flow ratesCai, R.; M. Attoui;?J. Jiang; F. Korhonen; J. Hao; T. Petaja; J. KangasluomaAerosol Science and Technology, 2018, 52: 1332-1343\r\r2017\r\rAn optimized two-step derivatization method for analyzing diethylene glycol ozonation products using gas chromatography and mass spectrometryYu, R.; L. Duan;?J. Jiang*; J. HaoJournal of Environmental Sciences, 2017, 53: 313-321\r\rImpacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis ratesXing, J.; J. Wang; R. Mathur; S. Wang; G. Sarwar; J. Pleim; C. Hogrefe; Y. Zhang;?J. Jiang; D. C. Wong; J. HaoAtmos. Chem. Phys., 2017, 17: 9869-9883\r\rSix-day measurement of size-resolved indoor fluorescent bioaerosols of outdoor origin in an officeXie, Y.; O. A. Fajardo; W. Yan; B. Zhao*;?J. Jiang*Particuology, 2017, 31: 161-169\r\rNew particle formation in China: Current knowledge and further directionsWang, Z.; Z. Wu; D. Yue; D. Shang; S. Guo; J. Sun; A. Ding; L. Wang;?J. Jiang; H. Guo; J. Gao; H. C. Cheung; L. Morawska; M. Keywood; M. HuScience of The Total Environment, 2017, 577: 258-266\r\rLocal and regional contributions to fine particulate matter in Beijing during heavy haze episodesWang, Y.; S. Bao; S. Wang; Y. Hu; X. Shi; J. Wang; B. Zhao;?J. Jiang; M. Zheng; M. Wu; A. G. Russell; Y. Wang; J. HaoScience of The Total Environment, 2017, 580: 283-296\r\rParticulate matter pollution over China and the effects of control policiesWang, J.; B. Zhao; S. Wang; F. Yang; J. Xing; L. Morawska; A. Ding; M. Kulmala; V.-M. Kerminen; J. Kujansuu; Z. Wang; D. Ding; X. Zhang; H. Wang; M. Tian; T. Pet?j?;?J. Jiang; J. HaoScience of The Total Environment, 2017, 584-585: 426-447\r\rNascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flameTang, Q.; R. Cai; X. You*;?J. Jiang*Proceedings of the Combustion Institute, 2017, 36: 993-1000\r\rBiocoal Briquettes Combusted in a Household Cooking Stove: Improved Thermal Efficiencies and Reduced Pollutant EmissionsQi, J.; Q. Li; J. Wu*;?J. Jiang*; Z. Miao; D. LiEnvironmental Science & Technology, 2017, 51: 1886-1892\r\rPM2.5?Emission Reduction by Technical Improvement in a Typical Coal-Fired Power Plant in ChinaMa, Z.; Z. Li;?J. Jiang; J. Deng; Y. Zhao; S. Wang; L. DuanAerosol and Air Quality Research, 2017, 17: 636-643\r\rImpacts of coal burning on ambient PM2.5?pollution in ChinaMa, Q.; S. Cai; S. Wang; B. Zhao; R. V. Martin; M. Brauer; A. Cohen;?J. Jiang; W. Zhou; J. Hao; J. Frostad; M. H. Forouzanfar; R. T. BurnettAtmos. Chem. Phys., 2017, 17: 4477-4491\r\rPerformance calibration of low-cost and portable particular matter (PM) sensorsLiu, D.; Q. Zhang;?J. Jiang; D.-R. ChenJournal of Aerosol Science, 2017, 112: 1-10\r\rBoron Doped ZIF-67@Graphene Derived Carbon Electrocatalyst for Highly Efficient Enzyme-Free Hydrogen Peroxide BiosensorLi, Z.; W. Wang; H. Cao; Q. Zhang; X. Zhou; D. Wang; Y. Wang; S. Zhang; G. Zhang; C. Liu; Y. Zhang; R. Liu*;?J. Jiang*Advanced Materials Technologies, 2017, 2: 1700224\r\rInfluence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5?from coal-fired power plants equipped with selective catalytic reduction (SCR)Li, Z.;?J. Jiang; Z. Ma; O. A. Fajardo; J. Deng; L. DuanEnvironmental Pollution, 2017, 230: 655-662\r\rImpacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implicationLi, Q.;?J. Jiang*; S. X. Wang; K. Rumchev; R. Mead-Hunter; L. Morawska; J. M. HaoScience of the Total Environment, 2017, 576: 347-361\r\rComparison of nanoparticle generation by two plasma techniques: Dielectric barrier discharge and spark dischargeJiang, L.; Q. Li; D. Zhu; M. Attoui; Z. Deng; J. Tang;?J. Jiang*Aerosol Science and Technology, 2017, 51: 206-213\r\rModeling biogenic and anthropogenic secondary organic aerosol in ChinaHu, J.; P. Wang; Q. Ying; H. Zhang; J. Chen; X. Ge; X. Li;?J. Jiang; S. Wang; J. Zhang; Y. Zhao; Y. ZhangAtmos. Chem. Phys., 2017, 17: 77-92\r\rMass extinction efficiency and extinction hygroscopicity of ambient PM2.5?in urban ChinaCheng, Z.; X. Ma; Y. He;?J. Jiang*; X. Wang; Y. Wang*; L. Sheng; J. Hu; N. YanEnvironmental Research, 2017, 156: 239-246\r\rAerosol surface area concentration: a governing factor in new particle formation in BeijingCai, R.; D. Yang; Y. Fu; X. Wang; X. Li; Y. Ma; J. Hao; J. Zheng*;?J. Jiang*Atmos. Chem. Phys., 2017, 17: 12327-12340\r\rA new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavengingCai, R.;?J. Jiang*Atmos. Chem. Phys., 2017, 17: 12659-12675\r\rA miniature cylindrical differential mobility analyzer for sub-3 nm particle sizingCai, R.; D.-R. Chen; J. Hao;?J. Jiang*Journal of Aerosol Science, 2017, 106: 111-119\r\r2016\r\rEvolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion ProcessZhou, W.;?J. Jiang*; L. Duan; J. HaoEnvironmental Science & Technology, 2016, 50: 7861-7869\r\rCharacteristics of NOx emission from Chinese coal-fired power plants equipped with new technologiesMa, Z.; J. Deng; Z. Li; Q. Li; P. Zhao; L. Wang; Y. Sun; H. Zheng; L. Pan; S. Zhao;?J. Jiang*; S. Wang; L. Duan*Atmospheric Environment, 2016, 131: 164-170\r\rA spectrometer for measuring particle size distributions in the range of 3 nm to 10 μmLiu, J.;?J. Jiang*; Q. Zhang; J. Deng; J. HaoFrontiers of Environmental Science & Engineering, 2016, 10: 63-72\r\rSemi-coke briquettes: towards reducing emissions of primary PM2.5, particulate carbon, and carbon monoxide from household coal combustion in ChinaLi, Q.; X. Li;?J. Jiang*; L. Duan; S. Ge; Q. Zhang; J. Deng; S. Wang; J. Hao*Scientific Reports, 2016, 6: 19306\r\rInfluences of coal size, volatile matter content, and additive on primary particulate matter emissions from household stove combustionLi, Q.;?J. Jiang*; Q. Zhang; W. Zhou; S. Cai; L. Duan; S. Ge; J. HaoFuel, 2016, 182: 780-787\r\rImproving the Energy Efficiency of Stoves To Reduce Pollutant Emissions from Household Solid Fuel Combustion in ChinaLi, Q.;?J. Jiang*; J. Qi; J. Deng; D. Yang; J. Wu; L. Duan; J. HaoEnvironmental Science & Technology Letters, 2016, 3: 369-374\r\rGaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion EfficienciesLi, Q.;?J. Jiang*; S. Cai; W. Zhou; S. Wang; L. Duan; J. HaoEnvironmental Science & Technology Letters, 2016, 3: 98-103\r\rInvestigating the impact of regional transport on PM2.5?formation using vertical observation during APEC 2014 Summit in BeijingHua, Y.; S. Wang; J. Wang;?J. Jiang; T. Zhang; Y. Song; L. Kang; W. Zhou; R. Cai; D. Wu; S. Fan; T. Wang; X. Tang; Q. Wei; F. Sun; Z. XiaoAtmos. Chem. Phys., 2016, 16: 15451-15460\r\rContinuous Measurement of Ambient Aerosol Liquid Water Content in BeijingFajardo, O. A.;?J. Jiang*; J. HaoAerosol and Air Quality Research, 2016, 16: 1152-1164\r\rSynergetic formation of secondary inorganic and organic aerosol: effect of SO2?and NH3?on particle formation and growthChu, B.; X. Zhang; Y. Liu; H. He; Y. Sun;?J. Jiang; J. Li; J. HaoAtmos. Chem. Phys., 2016, 16: 14219-14230\r\rStatus and characteristics of ambient PM2.5?pollution in global megacitiesCheng, Z.; L. Luo; S. Wang; Y. Wang; S. Sharma; H. Shimadera; X. Wang; M. Bressi; R. M. de Miranda;?J. Jiang; W. Zhou; O. Fajardo; N. Yan; J. HaoEnvironment International, 2016, 89-90: 212-221\r\r2015\r\rOptimized DNA extraction and metagenomic sequencing of airborne microbial communitiesJiang, W.; P. Liang; B. Wang; J. Fang; J. Lang; G. Tian;?J. Jiang; T. F. ZhuNature Protocols, 2015, 10: 768\r\rCharacteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions MeasurementZheng, X.; Y. Wu;?J. Jiang; S. Zhang; H. Liu; S. Song; Z. Li; X. Fan; L. Fu; J. HaoEnvironmental Science & Technology, 2015, 49: 13492-13500\r\rLaboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter MeasurementWang, Y.; J. Li; H. Jing; Q. Zhang;?J. Jiang; P. BiswasAerosol Science and Technology, 2015, 49: 1063-1077\r\rAssessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, ChinaWang, J.; S. Wang; A. S. Voorhees; B. Zhao; C. Jang;?J. Jiang; J. S. Fu; D. Ding; Y. Zhu; J. HaoAtmospheric Environment, 2015, 123, Part B: 440-448\r\rImpacts of load mass on real-world PM1?mass and number emissions from a heavy-duty diesel busWang, C.; Y. Wu;?J. Jiang; S. Zhang; Z. Li; X. Zheng; J. HaoInternational Journal of Environmental Science and Technology, 2015, 12: 1261-1268\r\rEffect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in ChinaLi, Z.;?J. Jiang; Z. Ma; S. Wang; L. DuanAtmospheric Environment, 2015, 120: 227-233\r\rImproving the Removal Efficiency of Elemental Mercury by Pre-Existing Aerosol Particles in Double Dielectric Barrier Discharge TreatmentsLi, Q.;?J. Jiang*; L. Duan; J. Deng; L. Jiang; Z. Li; J. HaoAerosol Air Qual. Res., 2015, 15: 1506-1513\r\rA Review of Aerosol Nanoparticle Formation from IonsLi, Q.;?J. Jiang*; J. HaoKona Powder and Particle Journal, 2015, 57-74\r\rParticulate Matter Distributions in China during a Winter Period with Frequent Pollution Episodes (January 2013)Jiang*, J.; W. Zhou; Z. Cheng; S. Wang; K. He; J. HaoAerosol and Air Quality Research, 2015, 15: 494-503\r\rCharacteristics and source apportionment of PM2.5?during a fall heavy haze episode in the Yangtze River Delta of ChinaHua, Y.; Z. Cheng; S. Wang;?J. Jiang; D. Chen; S. Cai; X. Fu; Q. Fu; C. Chen; B. Xu; J. YuAtmospheric Environment, 2015, 123: 380-391\r\rEstimation of Aerosol Mass Scattering Efficiencies under High Mass Loading: Case Study for the Megacity of Shanghai, ChinaCheng, Z.;?J. Jiang*; C. Chen; J. Gao; S. Wang*; J. G. Watson; H. Wang; J. Deng; B. Wang; M. Zhou; J. C. Chow; M. L. Pitchford; J. HaoEnvironmental Science & Technology, 2015, 49: 831–838\r\r2014\r\rEnhanced sulfate formation during China's severe winter haze episode in January 2013 missing from current modelsWang, Y.; Q. Zhang;?J. Jiang; W. Zhou; B. Wang; K. He; F. Duan; Q. Zhang; S. Philip; Y. XieJournal of Geophysical Research: Atmospheres, 2014, 119: 2013JD021426\r\rImpact of aerosol-meteorology interactions on fine particle pollution during China's severe haze episode in January 2013Wang, J. D.; S. X. Wang;?J. Jiang; A. J. Ding; M. Zheng; B. Zhao; D. C. Wong; W. Zhou; G. J. Zheng; L. Wang; J. E. Pleim; J. M. HaoEnvironmental Research Letters, 2014, 9: 094002\r\rUltrafine particle emissions from essential-oil-based mosquito repellent productsLiu, J.; D. Fung;?J. Jiang*; Y. Zhu*Indoor Air, 2014, 24: 327-335\r\rAerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and FlowrateJiang*, J.; C. Kim; X. Wang; M. R. Stolzenburg; S. L. Kaufman; C. Qi; G. J. Sem; H. Sakurai; N. Hama; P. H. McMurryAerosol Science and Technology, 2014, 48: 1207-1216\r\rHygroscopicity of particles generated from photooxidation of alpha-pinene under different oxidation conditions in the presence of sulfate seed aerosolsChu, B. W.; K. Wang; H. Takekawa; J. H. Li; W. Zhou;?J. Jiang; Q. X. Ma; H. He; J. M. HaoJournal of Environmental Sciences, 2014, 26: 129-139\r\rDecreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidationChu, B.; Y. Liu; J. Li; H. Takekawa; J. Liggio; S.-M. Li;?J. Jiang; J. Hao; H. HeEnvironmental Pollution, 2014, 193: 88-93\r\rImpact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011Cheng, Z.; S. Wang; X. Fu; J. G. Watson;?J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; J. C. Chow; J. HaoAtmospheric Chemistry and Physics, 2014, 14: 4573-4585\r\rInhalable Microorganisms in Beijing’s PM2.5?and PM10?Pollutants during a Severe Smog EventCao, C.; W. Jiang; B. Wang; J. Fang; J. Lang; G. Tian*;?J. Jiang*; T. F. Zhu*Environmental Science & Technology, 2014, 48: 1499-1507\r\r2013\r\rAssessing Young People’s Preferences in Urban Visibility in BeijingFajardo, O. A.;?J. Jiang*; J. Hao*Aerosol and Air Quality Research, 2013, 13: 1536-1543\r\rEffects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidationChu, B.; J. Hao; J. Li; H. Takekawa; K. Wang;?J. JiangFrontiers of Environmental Science & Engineering, 2013, 7: 1-9\r\rLong-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, ChinaCheng, Z.; S. Wang;?J. Jiang; Q. Fu; C. Chen; B. Xu; J. Yu; X. Fu; J. HaoEnvironmental Pollution, 2013, 182: 101-110\r\rCharacteristics and health impacts of particulate matter pollution in China (2001–2011)Cheng, Z.;?J. Jiang*; O. Fajardo; S. Wan; J. Hao*Atmospheric Environment, 2013, 65: 186-194\r\r2012\r\rChemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou, ChinaZhang, H.; S. Wang; J. Hao; L. Wan;?J. Jiang; M. Zhang; H. E. S. Mestl; L. W. H. Alnes; K. Aunan; A. W. MelloukiAtmospheric Environment, 2012, 51: 94-99\r\rSource apportionment of PM2.5?nitrate and sulfate in China using a source-oriented chemical transport modelZhang, H.; J. Li; Q. Ying; J. Z. Yu; D. Wu; Y. Cheng; K. He;?J. JiangAtmospheric Environment, 2012, 62: 228-242\r\rMobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributionsWiedensohler, A.; W. Birmili; A. Nowak; A. Sonntag; K. Weinhold; M. Merkel; B. Wehner; T. Tuch; S. Pfeifer; M. Fiebig; A. M. Fjaraa; E. Asmi; K. Sellegri; R. Depuy; H. Venzac; P. Villani; P. Laj; P. Aalto; J. A. Ogren; E. Swietlicki; P. Williams; P. Roldin; P. Quincey; C. Huglin; R. Fierz-Schmidhauser; M. Gysel; E. Weingartner; F. Riccobono; S. Santos; C. Gruning; K. Faloon; D. Beddows; R. Harrison; C. Monahan; S. G. Jennings; C. D. O'Dowd; A. Marinoni; H. G. Horn; L. Keck;?J. Jiang; J. Scheckman; P. H. McMurry; Z. Deng; C. S. Zhao; M. Moerman; B. Henzing; G. de Leeuw; G. Loschau; S. BastianAtmospheric Measurement Techniques, 2012, 5: 657-685\r\rChemical characteristics of size-resolved PM2.5?at a roadside environment in Beijing, ChinaSong, S.; Y. Wu;?J. Jiang; L. Yang; Y. Cheng; J. HaoEnvironmental Pollution, 2012, 161: 215-221\r\rAssessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo dataHan, X.; N. Corson; P. Wade-Mercer; R. Gelein;?J. Jiang; M. Sahu; P. Biswas; J. N. Finkelstein; A. Elde; G. Oberd?rsterToxicology, 2012, 297: 1-9\r\rThe remarkable effect of FeSO4?seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOxChu, B.; J. Hao; H. Takekawa; J. Li; K. Wang;?J. JiangAtmospheric Environment, 2012, 55: 26-34\r\rAcid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layerChen, M.; M. Titcombe;?J. Jiang; C. Jen; C. Kuang; M. L. Fischer; F. L. Eisele; J. I. Siepmann; D. R. Hanson; J. Zhao; P. H. McMurryPNAS, 2012, 109: 18713-18718\r\r2011\r\rRole of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion PropertiesSuttiponparnit, K.;?J. Jiang; M. Sahu; S. Suvachittanont; T. Charinpanitkul; P. BiswasNanoscale Research Letters, 2011, 6:\r\rFirst Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation EventsJiang*, J.; J. Zhao; M. Chen; F. L. Eisele; J. Scheckman; B. J. Williams; C. Kuang; P. H. McMurryAerosol Science and Technology, 2011, 45: ii-v\r\rElectrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nmJiang*, J.; M. Chen; C. Kuang; M. Attoui; P. H. McMurryAerosol Science and Technology, 2011, 45: 510 - 521\r\rTransfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle ClassificationJiang, J.; M. Attoui; M. Heim; N. A. Brunelli; P. H. McMurry; G. Kasper; R. C. Flagan; K. Giapis; G. MouretAerosol Science and Technology, 2011, 45: 480 - 492\r\rAmbient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and AmmoniaHanson, D. R.; P. H. McMurry;?J. Jiang; D. Tanne; L. G. HueyEnvironmental Science & Technology, 2011, 45: 8881-8888\r\rValidation of an LDH assay for assessing nanoparticle toxicityHan, X.; R. Gelein; N. Corson; P. Wade-Mercer;?J. Jiang; P. Biswas; J. N. Finkelstein; A. Elder; G. Oberd?rsterToxicology, 2011, 287: 99-104\r\r2010 and before\r\rConcept of Assessing Nanoparticle Hazards Considering Nanoparticle Dosemetric and Chemical/Biological Response MetricsRushton, E. K.;?J. Jiang; S. S. Leonard; S. Eberly; V. Castranova; P. Biswas; A. Elder; X. Han; R. Gelein; J. Finkelstein; G. OberdorsterJournal of Toxicology and Environmental Health, Part A, 2010, 73: 445 - 461\r\rCharacterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studiesJiang, J.;G. Oberd?rster; P. BiswasJournal of Nanoparticle Research, 2009, 11: 77-89\r\rSynthesis of visible light-active nanostructured TiOx (x < 2) photocatalysts in a flame aerosol reactorDhumal, S. Y.; T. L. Daulton;?J. Jiang; B. Khomami; P. BiswasApplied Catalysis B: Environmental, 2009, 86: 145-151\r\rCrystal structure mediates mode of cell death in TiO2?nanotoxicityBraydich-Stolle; L. K., N. M. Schaeublin; R. C. Murdock;?J. Jiang; P. Biswas; J. J. Schlager; S. M. HussainJournal of Nanoparticle Research, 2009, 11: 1361-1374\r\rQuench-Ring Assisted Flame Synthesis of SiO2-TiO2?Nanostructured CompositeWorathanakul, P.;?J. Jiang; P. Biswas; P. KongkachuichayJournal of Nanoscience and Nanotechnology, 2008, 8: 6253-6259\r\rOne-step synthesis of noble metal-titanium dioxide nanocomposites in a flame aerosol reactorTiwari, V.;?J. Jiang; V. Sethi; P. BiswasApplied Catalysis A: General, 2008, 345: 241-246\r\rCharged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2-CO2?coal combustionSuriyawong, A.; C. J. Hogan;?J. Jiang; P. BiswasFuel, 2008, 87: 673-682\r\rDoes nanoparticle activity depend upon size and crystal phase?Jiang, J.; G. Oberd?rster; A. Elder; R. Gelein; P. Mercer; P. BiswasNanotoxicology, 2008, 2: 33 - 42\r\rModel for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanismsJiang, J.; M. H. Lee; P. BiswasJournal of Electrostatics, 2007, 65: 209-220\r\rAerosol charging and capture in the nanoparticle size range (6-15 nm) by direct photoionization and diffusion mechanismsJiang, J.; C. J. Hogan; D. R. Chen; P. BiswasJournal of Applied Physics, 2007, 102: 034904\r\rSynthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphologyJiang, J.; D. R. Chen; P. BiswasNanotechnology, 2007, 18: 285603\r\rTrends in anthropogenic mercury emissions in China from 1995 to 2003Wu, Y.; S. X. Wang; D. G. Streets; J. M. Hao; M. Chan;?J. JiangEnvironmental Science & Technology, 2006, 40: 5312-5318\r\rAnthropogenic mercury emissions in ChinaStreets, D. G.; J. M. Hao; Y. Wu;?J. Jiang; M. Chan; H. Z. Tian; X. B. FengAtmospheric Environment, 2005, 39: 7789-7806 相关热点
最新收录
- 杉本愛莉鈴(杉本爱莉铃 06-04
- 天野花乃(Kano Amano) 06-04
- 椛岛光 06-01
- 星乃梦奈(ほしの ゆな 06-01
- 沖田奈奈 沖田奈々(Nana 06-01
- 藤仁依那 藤にいな(Niina 06-01
- 矢田步美 矢田あゆみ(Ay 06-01
- 妹岳夏目 妹岳なつめ(Na 06-01
- 麻仓香穗里 麻仓かほり 06-01
- 立花广美 (立花ひろみ H 05-31