热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
纪海峰
2023-05-11 20:53
  • 纪海峰
  • 纪海峰 - 博士 副教授 硕导-南京邮电大学-理学院-个人资料

近期热点

资料介绍

个人简历


主授课程
高数数学
个人简历
2006.9-2010.6 南京师范大学,本科,信息与计算科学
2010.9-2015.6 南京师范大学,硕博连读,计算数学
研究项目
[1]界面问题的高阶奇性去除浸入界面有限元方法研究——江苏省自然科学基金青年基金、BK20160880、20万元、2016.07-2019.06、负责人
[2]复合材料中带有接触热阻热传导问题的非拟合网格法研究——国家省自然科学基金青年基金、11701291、25万元、2018.01-2020.12、负责人

研究领域


微分方程数值解、界面问题的非拟和网格方法""

近期论文


[1] Ji, Haifeng; Zhang, Qian; Wang, Qiuliang; Xie, Yifan A partially penalised immersed finite element method for elliptic interface problems with non-homogeneous jump conditions. East Asian J. Appl. Math. 8 (2018), no. 1, 1–23.
[2] Ji, Haifeng; Zhang, Qian; Zhang, Bin Inf-sup stability of Petrov-Galerkin immersed finite element methods for one-dimensional elliptic interface problems. Numer. Methods Partial Differential Equations 34 (2018), no. 6, 1917–1932.
[3] Ji, Haifeng; Chen, Jinru; Li, Zhilin A high-order source removal finite element method for a class of elliptic interface problems. Appl. Numer. Math. 130 (2018), 112–130.
[4] Li, Zhilin; Ji, Haifeng; Chen, Xiaohong Accurate solution and gradient computation for elliptic interface problems with variable coefficients. SIAM J. Numer. Anal. 55 (2017), no. 2, 570–597.
[5] Ji, Haifeng; Wang, Feng; Chen, Jinru Unfitted finite element methods for the heat conduction in composite media with contact resistance. Numer. Methods Partial Differential Equations 33 (2017), no. 1, 354–380.
[6] Ji, H.; Zhang, Q. A simple finite element method for Stokes flows with surface tension using unfitted meshes. Internat. J. Numer. Methods Fluids 81 (2016), no. 2, 87–103.
[7] Ji, Haifeng; Chen, Jinru; Li, Zhilin Augmented immersed finite element methods for some elliptic partial differential equations. Int. J. Comput. Math. 93 (2016), no. 3, 540–558.
[8] Ji, Haifeng; Chen, Jinru; Li, Zhilin A new augmented immersed finite element method without using SVD interpolations. Numer. Algorithms 71 (2016), no. 2, 395–416.
[9] Ji, Haifeng; Chen, Jinru; Li, Zhilin A symmetric and consistent immersed finite element method for interface problems. J. Sci. Comput. 61 (2014), no. 3, 533–557.

相关热点

扫码添加好友