热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
袁源
2023-05-11 02:31
  • 袁源
  • 袁源 - 博士 讲师-华南师范大学-华南数学应用与交叉研究中心-个人资料

近期热点

资料介绍

个人简历


教育背景
2015.09 – 2018.08 博士,数学专业,香港中文大学数学系,导师:辛周平 教授
2013.08 – 2015.08 硕士,数学专业,香港中文大学数学系,导师:辛周平 教授
2009.09 – 2013.06 学士,数学与应用数学专业,吉林大学
2015.09 -- 2018.08 Ph.D. The Chinese University of Hong Kong. Supervisors: Prof. Zhouping Xin.
2013.08 -- 2015.08 M.Phil. The Chinese University of Hong Kong. Supervisors: Prof. Zhouping Xin.
2009.09 -- 2013.06 Bachelor. Jilin University.
工作经历
2018.09 – 至今 特聘副研究员,华南数学应用与交叉研究中心,华南师范大学
2019.05 – 2020.03 博士后,布雷西亚大学, 导师:Paolo Secchi 教授
2018.09 -- Present Special associate research fellow, CAMIS, South China Normal University,
2019.05 -- 2020.03 Postdoc, University of Brescia, Supervisor: Prof. Paolo Secchi.
科研项目
2020.01.01--2022.12.31: 非等熵气体方程的真空自由界面问题的一些研究;国家自然科学基金青年科学基金项目;主持
2021.01--2023.12 含真空情形的可压Navier-Stokes方程的有界熵解的存在性问题;广东省自然科学基金面上项目;主持
Preprints:
Q. Yuan, Y. Yuan, Periodic perturbations of a composite wave of two viscous shocks for 1-D full compressible Navier-Stokes equations, https://arxiv.org/abs/ 2012.13934
P. Secchi, Y. Yuan, Weakly nonlinear surface waves on the plasma-vacuum interface (in preparation)

研究领域


"Partial differential equations

近期论文


Z. Xin, Q. Yuan, Y. Yuan, Asymptotic stability of shock waves and rarefaction waves under periodic perturbations for 1-D convex scalar conservation laws. (to appear in Indiana. Univ. Math. J.) https://arxiv.org/abs/1809.09308
Y. Yuan, On the existence of non-isentropic rotating gaseous stars. (to appear in Sci. China. Math.) https://arxiv.org/abs/1710.02915.
Q. Yuan, Y. Yuan, On Riemann solutions under different initial periodic perturbations at two infinities for 1-d scalar convex conservation laws, J. Differential Equations 268 (2020), no. 9, 5140–5155.
X. Liu, Y. Yuan, The self-similar solutions to full compressible Navier-Stokes equations without heat conductivity. Math. Models Methods Appl. Sci. 29 (2019), no. 12, 2271–2320.
Z. Xin, Q. Yuan, Y. Yuan, Asymptotic stability of shock profiles and rarefaction waves under periodic perturbations for 1-d convex scalar viscous conservation laws, SIAM J. Math. Anal. 51 (2019), no. 4, 2971–2994.
X. Liu, Y. Yuan, Local existence and uniqueness of strong solutions to the free boundary problem of the full compressible Navier-Stokes Equations in three dimensions, SIAM J. Math. Anal. 51(2019), no.2, 748–789.

相关热点

扫码添加好友