赵景军
近期热点
资料介绍
个人简历
学术访问经历2008年-2009年英国剑桥大学访问学者2010年香港大学访问学者2015年中国科学院数学与系统科学研究院访问教授2019年加拿大阿尔伯塔大学高级访问学者科研项目分数阶常微分方程高精度数值方法的理论研究及应用,国家自然科学基金(在研),负责人半线性微分方程的数值理论及其应用,国家自然科学基金(已结题),负责人时滞微分方程的数值算法分析,黑龙江省自然科学基金(已结题),排序第二延迟积分微分系统及比例系统的数值稳定性研究,黑龙江省自然科学基金(已结题),负责人延迟微分系统的数值稳定性研究,哈尔滨工业大学理学基金(已结题),负责人延迟微分方程稳定性分析,国家自然科学基金(已结题),排序第二仿真算法软件库与数学符号处理面向对象交互数据库,国防预研基金(已结题),排序第二微分方程的高振荡积分求解,哈尔滨工业大学科研创新基金(已结题),排序第二延迟微分方程数值分析及其在控制系统中的应用,国家自然科学基金(已结题),排序第三科研奖励延迟微分方程的数值稳定性,黑龙江省科学技术奖(自然科学类)二等奖,排序第一Runge-Kutta方法及延迟微分方程数值分析,中国高校自然科学奖二等奖,排序第二中国仿真学会优秀科技工作者讲授课程数值分析(本科生)偏微分方程差分方法(本科生)偏微分方程数值解(本科生)计算方法(本科生)微分方程数值方法及其应用(本科生)谱与拟谱方法(本科生)NUMERICAL ANALYSIS(本科生)矩阵分析(研究生)函数构造论(研究生)偏微分方程数值解(研究生)数值数学基础(研究生)泛函微分方程稳定性理论(研究生)科学计算原理(留学研究生)教学项目工程问题中的数学方法的研究,黑龙江省教育厅新世纪教改项目,负责人教学奖励培养工科研究生科学计算能力,提高科研创新素质——《数值分析》课程建设新思路,获黑龙江省高校教学成果一等奖,排序第二招生信息硕士研究生招生计划:每年招生1-2名(推免生 或 初试:英语,政治,数学分析,高等代数)博士研究生招生计划:每年招生1-2名(直博生 或 硕博连读生 或 初试:英语,专业课)硕士研究生共培养硕士研究生41人(其中毕业38人,在读3人)毕业硕士研究生:1. 黄五久:上海友信生物科技有限公司2. 李 瑞:成都电子科技大学3. 马 敏:中国电科第三十八研究所4. 王宏霞:浙江工业大学5. 董世勇:61726部队6. 王 麟:黑龙江省科技大学7. 袁海燕:黑龙江省工程学院8. 李 雨:黑龙江省八一农垦大学9. 蒋 涛:扬州大学科学学院10.张兆军:江苏师范大学电气工程及自动化学院11.王世英:黑龙江省工程学院12.隋哲楠:美国俄亥俄州立大学博士研究生13.唐贤芳:西北工业大学明德学院14.陈延艳:华为技术有限公司(北京)15.李 欣:成都九洲电子信息系统股份有限公司16.胡付环:济南市历城六中17.赵红艳:大庆市第二十八中学18.刘仪阳:华为技术有限公司19.岳 双:空军航空大学20.姚廷伟:三一重工21.葛金丽:野村综研(北京)系统集成有限公司22.龙 腾: 61046部队总参3部8局(北京)23.詹 锐:哈尔滨工业大学数学系博士研究生24.高 正:美国纽约州石溪大学博士研究生25.李欣迪:美国纽约州石溪大学博士研究生26.高 波:中国人民解放军国际关系学院27.韩 旭:辽宁兴隆大家庭商业集团28.汪 洋:哈尔滨工业大学航天学院博士研究生29.董晓来:太原卫星发射中心30.杜文贺:山东济南浪潮集团下的浪潮软件31.闫雪微:中国农业银行股份有限公司黑龙江省分行32.苏嘉:哈尔滨工业大学计算机科学与技术学院博士研究生33.李海瑞:华为技术有限公司(上海)34.郭雪:北京交通大学计算机与信息技术学院博士研究生35.简林波:贵阳银行股份有限公司36.魏婷婷:中兴通讯股份有限公司(深圳)37.洪李玲:华为技术有限公司(深圳)38.张梦真:中信银行股份有限公司无锡分行在读硕士研究生:温凯凯,田志炜,陈洪博士研究生共培养博士研究生17人(其中毕业10人,在读7人)毕业博士研究生:1. 肖静宇:天津职业技术师范大学2. 袁海燕:黑龙江省工程学院3. 柳 陶:东北大学(秦皇岛分校)4. 刘松树:东北大学(秦皇岛分校)5. 张 宇:哈尔滨商业大学6. 曹 阳:东北林业大学(入选优秀青年教师计划)7. 詹 锐:广东工业大学(入选青年百人计划)8. 龙 腾:总参3部8局(北京)9. 范 燕:浙江师范大学(入选青年人才计划)10.李 雨:东北林业大学(入选优秀青年教师计划)在读博士研究生: 赵文娇,姜行洲,易玉连,吕志强,刘玉凤,周 皓,孔嘉萌,黄金晶研究领域
"微分方程的数值计算积分方程的数值计算"近期论文
· General linear and spectral Galerkin methods for the Riesz space fractional diffusion equation, Appl. Math. Comput., 2020, 364, 124664. (SCI)· Backward difference formulae and spectral Galerkin methods for the Riesz space fractional diffusion equation, Math. Comput. Simulation, 2019, 166, 494-507. (SCI) · Mean square convergence of explicit two step methods for highly nonlinear stochastic differential equations, Appl. Math. Comput., 2019, 361, 466-483. (SCI)· Super implicit multistep collocation methods for weakly singular Volterra integral equations, Numer. Math. Theor. Meth. Appl., 2019, 12(4), 1039-1065. (SCI)· The analysis of operator splitting for the Gardner equation, Appl. Numer. Math., 2019, 144, 151-175. (SCI)· Generalized backward differentiation formulae for thefractional differential equation, EAJAM, 2019, 9(3), 506-521. (SCI)· Error analysis of the Legendre-Gauss collocation methods for the nonlinear distributed-order fractional differential equation, Appl. Numer. Math., 2019, 142, 122-138. (SCI)· An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations, Appl. Math. Comput., 2019, 351, 124-138. (SCI)· Multistep collocation methods for second-kind Volterraintegral equations with weakly singular kernels, EAJAM, 2019, 9(1), 67-86. (SCI)· A kind of product integration scheme for solving fractional ordinary differential equations, Appl. Numer. Math., 2019, 136, 279-292. (SCI) · D-convergence and conditional GDN-stability of exponential Runge-Kutta methods for semilinear delay differential equations, Appl. Math. Comput., 2018, 339, 45-58. (SCI)· The analysis of operator splitting methods for the Camassa-Holm equation, Appl. Numer. Math., 2018, 130, 1-22. (SCI)· Convergence and stability analysis of exponential generallinear methods for delay differential equations, Numer. Math. Thero. Meth.Appl., 2018, 11(2), 354-382. (SCI)· Multiderivative extended Runge–Kutta–Nystrom methods formulti-frequency oscillatory systems, Int. J. Comput. Math., 2018, 95(1), 231-254. (SCI)· Delay-dependent stability of symmetric Runge-Kutta methods for second orderdelay differential equations with three parameters, Appl. Numer. Math., 2017, 117, 103-114. (SCI)· Exponential additive Runge-Kutta methods for semi-linear differentialequations, EAJAM, 2017, 7(2), 286-305. (SCI)· High order fractional backward differentiation formulae, Appl. Anal., 2017, 96(10), 1669-1680. (SCI) · Sinc numerical solution for pantograph Volterra delay-integro-differentialequation, Int. J. Comput. Math., 2017, 94(5), 853-865. (SCI)· Stability of Symmetric Runge-Kutta Methods for Neutral DelayIntegro-Differential Equations, SIAM J. Numer. Anal., 2017, 55(1), 328-348. (SCI)· Stability analysis of explicit exponential integrators for delay differentialequations, Appl. Numer. Math., 2016, 109, 96-108. (SCI)· Determining surface heat flux for noncharacteristic Cauchy problem for Laplaceequation, Math. Comput. Simulation, 2016, 129, 69-80. (SCI)· Sinc collocation solutions for the integral algebraic equation of index-1, Adv.Appl. Math. Mech., 2016, 8(5), 757-771. (SCI)· Legendre Spectral Collocation Methods for Volterra Delay-Integro-DifferentialEquations, J. Sci. Comput., 2016, 67(3), 1110-1133. (SCI)· An optimal filtering method for a time fractional inverse advection-dispersionproblem, J. Inverse Ill-Posed Probl, 2016, 24(1), 51-58. (SCI)· An adaptive multigrid conjugate gradient method for permeability identificationof nonlinear diffusion equation, J. Inverse Ill-Posed Probl, 2016, 24(1),89-97. (SCI)· Two regularization methods for inverse source problem on thePoisson equation, Complex Var. Elliptic, 2015, 60(10), 1374-1391. (SCI)· Delay-dependent stability of symmetric boundary value methods for second orderdelay differential equations with three parameters, Numer. Algor., 2015, 69, 321-336. (SCI)· A wavelet multiscale-adaptive homotopy method for the inverse problem ofnonlinear diffusion equation, Inverse Probl. Sci. En., 2015, 23(4), 617-634.(SCI)· An analysis of delay-dependent stability of symmetric boundary value methodsfor the linear neutral delay integro-differential equations with fourparameters, Appl. Math. Modell., 2015, 39(9), 2453-2469. (SCI)· Central difference regularization method for inverse source problemon the Poisson equation, Complex Var. Elliptic, 2015, 60(3), 405-415. (SCI)· A modified Kernel method for solving Cauchy problem of two-dimensional heatconduction equation, Math. Meth. Appl. Sci., 2015, 7(1), 31-42. (SCI)· Legendre-Gauss collocation methods for nonlinear neutral delay differentialequations, Adv. Differ. Equ., 2015, 21, 1-24. (SCI)· A nonlinear multigrid method for inversion of two-dimensional acoustic waveequation, J. Inverse Ill-Posed Probl., 2014, 22(3), 429-448. (SCI)· An inverse problem for space-fractional backward diffusion problem, Math. Meth.Appl. Sci., 2014, 37, 1147-1158. (SCI)· Identification of space-dependent permeability in nonlinear diffusion equationfrom interior measurements using wavelet multiscale method, Inverse Probl. Sci.En., 2014, 22(4), 507-529. (SCI)· A comparison of regularization methods for identifying unknown source problemfor the modified Helmholtz equation, J. Inverse Ill-Posed Probl., 2014, 22(2),277-296. (SCI)· Collocation methods for fractional integro-differential equations with weaklysingular kernels, Numer. Algor. 2014, 65(4), 723-743. (SCI)· A new regularization method for Cauchy problem of elliptic equation, ComplexVar. Elliptic, 2014, 59(9), 1302-1314. (SCI)· Stability analysis of block boundary value methods for the neutral differentialequation with many delays, Appl. Math. Model., 2014, 38(1), 325-335. (SCI)· Delay-dependent stability analysis of symmetric boundary value methodsfor linear delay integro-differential equations, Numer. Algor. 2014, 65(1),125-151. (SCI)· Stability analysis of block boundary value methods for neutral pantographequation, J. Difference Equ. Appl., 2013, 19(8), 1227-1242. (SCI)· Two Tikhonov-type regularization methods for inverse source problem onthe Poisson equation, Math. Meth. Appl. Sci., 2013, 36(11), 1399-1408. (SCI)· An adaptive homotopy method for permeability estimation of a nonlineardiffusion equation, Inverse Probl. Sci. En., 2013, 21(4), 585-604. (SCI)· Numerical approximation of Hopf bifurcation for tumor-immune system competitionmodel with two delays, Adv. Appl. Math. Mech., 2013, 5(2), 146-162. (SCI)· Stability analysis of extended block boundary value methods for linear neutraldelay integro-differential equations, Int. J. Comput. Math., 2013,90(3), 705-726. (SCI)· A Finite element method for the multiterm time-space Riesz fractionaladvection-diffusion equations in finite domain, Abstr. Appl. Anal., 2013, DOI:10.1155/2013/868035. (SCI)· Stability and convergence of an effective finite element method for multitermfractional partial differential equations, Abstr. Appl. Anal., 2013, DOI:10.1155/2013/857205. (SCI)· Nonlinear stability and D-convergence of additive Runge-Kutta methods formultidelay-integro-differential equations, Abstr. Appl. Anal., 2012, DOI:10.1155/2012/854517. (SCI)· Some stability and convergence of additive Runge-Kutta methods for delay differentialequations with many delays, J. Appl. Math., 2012, DOI: 10.1155/2012/456814.(SCI)· Stability analysis of exponential Runge-Kutta methods for delay differentialequations, Appl. Math. Lett., 2011, 24(7), 1089-1092. (SCI)· Exponential Runge-Kutta methods for delay differential equations, Math. Comput.Simulation, 2010, 80(12), 2350-2361. (SCI)· Estimation of Longest Stability Interval for a Kind of Explicit LinearMultistep Methods, Discrete Dyn. Nat. Soc., 2010, DOI: 10.1155/2010/912691.(SCI)· Stability of theta-methods for linear delay-integro-differential systems, Int.J. Comput. Math., 2010, 87(12), 2697-2705. (SCI)· Analysis of delay-dependent stability of linear theta-methods for lineardelay-integro-differential equations, IMA J. Appl. Math., 2009, 74(6), 851-869.(SCI)· Stability of Runge-Kutta methods for neutraldelay-integro-differential-algebraic system, Math. Comput. Simulation, 2008,79(3), 571-583. (SCI)· Asymptotic stability of linear non-autonomous difference equations with fixeddelay, Appl. Math. Comput., 2008, 198(2), 787-798. (SCI)· Stability analysis theta-methods for neutral multidelay integrodifferentialsystem, Discrete Dyn. Nat. Soc., 2007, DOI: 10.1155/2007/42540. (SCI)· Stability of a class of Runge-Kutta methods for a family of pantographequations of neutral type, Appl. Math. Comput., 2006, 181(2), 1170-1181. (SCI)· Stability of the Rosenbrock methods for the neutral delaydifferential-algebraic equations, Appl. Math. Comput., 2005, 168(2), 1128-1144.(SCI)· Stability analysis of numerical methods for linear neutral Volterradelay-integro-differential system, Appl. Math. Comput., 2005, 167(2),1062-1079. (SCI)· H-stability of Runge-Kutta methods with variable stepsize for system of pantographequations, J. Comput. Math., 2004, 22(5), 727-734. (SCI)· Asymptotic stability of Runge-Kutta methods for the pantograph equations, J.Comput. Math., 2004, 22(4), 523-534. (SCI) · The stability of the theta-methods for delay differential equations, J. Comput.Math., 1999, 17(4), 441-448. (SCI)中国仿真学会会员,中国仿真学会算法委员会理事,黑龙江省工业与应用数学学会常务理事 相关热点