张亚勋
近期热点
资料介绍
个人简历
张亚勋,博士学位,硕导,主要从事纤维集成光学的相关研究,包括光纤传感、光纤光镊、生物波导、特种光纤等方向。热烈欢迎新同学加入刘志海教授、张羽教授及本人的科研小组。教育经历2011年08月-2015年03月,哈尔滨工程大学,机械电子工程,博士,导师:刘志海2009年08月-2012年03月,哈尔滨工程大学,光学工程,硕士,导师:刘志海2005年09月-2009年07月,沈阳理工大学,光信息科学与技术,本科,导师:渠彪工作经历2015年08月-至今,哈尔滨工程大学,物理与光电工程学院,讲师2015年08月-2018年07月,哈尔滨工程大学,光学工程,博士后,合作导师:苑立波2018年01月-2019年01月,皇家墨尔本理工大学(RMIT)访问学者承担项目1.中国科技部国家重点研发计划子课题,2018YFC1503700,光纤多参量地震观测系统研制与组网技术研究,2018.12-2021.12,641万元,在研,参与2.国家自然科学基金青年科学基金项目,基于纳米钻石NV色心的分布式光纤磁场传感机理研究(61705051),2018.1~2020.12,25万,在研,主持。3.黑龙江省自然科学基金优秀青年基金项目,基于特种光纤的内窥成像系统关键技术研究(YQ2020F011),2020.7~2023.7,10万,在研,主持。4.国家自然科学基金面上项目,基于微结构光纤的自加速类贝塞尔光束的构建方法及其特性研究(61675053),2017.1~2020.12,60万,在研,参与。5.国家自然科学基金青年科学基金项目,基于数字增强干涉的超高灵敏度三维光纤地震测量方法研究(61307104),2014.1~2016.12,26万,已结题,参与。6.国家自然科学基金面上项目,表面芯光纤及其石墨烯被覆功能器件研究(61275094),2013.1~2016.12,85万,已结题,参与。7.国家自然科学基金面上项目,基于光镊原理的光纤振动传感器(61177081),2012.1~2015.12,60万,已结题,参与。学术交流2018年1月至2019年1月 皇家墨尔本理工大学(RMIT)访问学者专利成果[1]. 张亚勋,汤晓云,张羽,刘志海,杨军,苑立波. 一种多芯光纤类贝塞尔光束阵列光镊[P]. CN108873171B,2020-06-16.[2]. 刘志海,林思雨,汤晓云,张亚勋,张羽,杨军,苑立波. 一种基于光纤的光驱动振动马达装置[P]. CN109300570B,2020-04-07.[3]. 张亚勋,汤晓云,张羽,刘志海,杨军,苑立波. 一种基于光纤光镊的高精度粒径测量装置及测量方法[P]. CN110793450A,2020-02-14.[4]. 张羽,张瑞伟,汤晓云,张亚勋,刘志海,杨军,苑立波. 一种光纤液体分析装置[P]. CN109406408A,2019-03-01.[5]. 张羽,刘美江,汤晓云,张亚勋,刘志海,杨军,苑立波. 一种基于微结构光纤的光驱动液体清洁装置[P]. CN109264809A,2019-01-25.[6]. 张亚勋,汤晓云,刘志海,张羽,杨军,苑立波. 一种基于纳米钻石NV色心的光纤磁场传感器[P]. CN109270478A,2019-01-25.[7]. 刘志海,张瑞伟,汤晓云,张羽,张亚勋,杨军,苑立波. 一种牵引光束产生装置及产生方法[P]. CN109270695A,2019-01-25.[8]. 张亚勋,王通,汤晓云,刘志海,张羽,杨军,苑立波. 一种基于波分复用技术的单光纤光镊[P]. CN109254346A,2019-01-22.[9]. 刘志海,刘超,王露,张亚勋,张羽,杨军,苑立波. 一种双通道边孔光纤光栅传感装置[P]. CN109211839A,2019-01-15.[10]. 刘志海,王雨杉,魏勇,张羽,张亚勋,赵恩铭,苑立波. 一种基于双芯光纤的液滴悬挂式焦点可调光镊[P]. CN105891943B,2019-01-15.[11]. 刘志海,李佳鹏,汤晓云,张羽,张亚勋,杨军,苑立波. 一种结合蜘蛛包卵丝的光纤湿度传感器及其制作方法[P]. CN109142271A,2019-01-04.[12]. 张亚勋,李佳鹏,汤晓云,刘志海,张羽,杨军,苑立波. 一种结合蜘蛛包卵丝的光纤湿度传感器及制作方法[P]. CN109142277A,2019-01-04.[13]. 张羽,汪德汀,汤晓云,刘志海,张亚勋,杨军,苑立波. 一种光驱动旋转装置[P]. CN109116473A,2019-01-01.[14]. 张羽,李勇志,汤晓云,刘志海,张亚勋,杨军,苑立波. 一种利用标准单模光纤驱动微小粒子转动的光马达[P]. CN109061868A,2018-12-21.[15]. 刘志海,刘璐,魏勇,张羽,张亚勋,赵恩铭,苑立波. 一种多通道表面等离子体共振光纤传感探针及测量方法[P]. CN106066312A,2016-11-02.[16]. 刘志海,朱宗达,魏勇,张羽,张亚勋,赵恩铭,苑立波.分布式表面等离子体共振光纤传感器及用于液体折射率测量的方法[P].CN106066313A,2016-11-02.[17]. 刘志海,朱宗达,魏勇,张羽,张亚勋,赵恩铭,苑立波. 一种微液滴传感装置及其用于折射率测量的方法[P]. CN106053389A,2016-10-26.[18]. 赵恩铭,王雨杉,魏勇,刘志海,张羽,张亚勋,苑立波. 基于光纤表面等离子体共振的分布式液体折射率传感装置[P]. CN105866070A,2016-08-17.[19]. 赵恩铭,陈云浩,刘志海,张亚勋,张羽,苑立波. 分布式表面等离子体共振光纤传感器[P]. CN105092535A,2015-11-25.[20]. 张羽,王露,赵恩铭,张亚勋,刘志海,苑立波. 基于液滴耦合的光纤分路器[P]. CN105044847A,2015-11-11.[21]. 赵恩铭,陈云浩,刘志海,张羽,张亚勋,苑立波. 可调谐液体微球激光器[P]. CN104993371A,2015-10-21.[22]. 张羽,赵莉,赵恩铭,张亚勋,刘志海,苑立波. 一种微纳光纤滤波器[P]. CN104914507A,2015-09-16.[23]. 刘志海,雷皎洁,张羽,赵恩铭,张亚勋,苑立波. 一种多波长液滴激光器[P]. CN104901150A,2015-09-09.[24]. 刘志海,徐妍,赵恩铭,张羽,张亚勋,苑立波. 一种双通道分布式传感检测装置[P]. CN104897618A,2015-09-09.[25]. 刘志海,刘春兰,张羽,张亚勋,赵恩铭,苑立波. 一种自加速类贝塞尔光束的产生装置[P]. CN104898287A,2015-09-09.[26]. 刘志海,魏勇,张羽,张亚勋,赵恩铭,苑立波. 液滴回音壁模式激光器及其制作方法[P]. CN104852259A,2015-08-19.[27]. 刘志海,徐妍,张羽,赵恩铭,张亚勋,苑立波. 长周期光纤光栅及制备方法[P]. CN104849799A,2015-08-19.[28]. 张羽,赵莉,赵恩铭,张亚勋,刘志海,苑立波. 一种基于椭圆芯光纤的单光纤光镊[P]. CN104698532A,2015-06-10.[29]. 张羽,王真真,赵恩铭,张亚勋,刘志海,苑立波. 一种基于光纤的微小粒子移动装置[P]. CN104698533A,2015-06-10.[30]. 刘志海,魏勇,赵恩铭,张羽,张亚勋,苑立波. 一种光纤表面等离子体激元激发聚焦装置及其制作方法[P]. CN104698539A,2015-06-10.[31]. 张羽,赵毓静,赵恩铭,张亚勋,刘志海,苑立波. 一种径向偏振光产生装置[P]. CN104698541A,2015-06-10.[32]. 刘志海,张亚勋,张羽,赵恩铭,梁佩博,苑立波. 一种光纤微流体驱动装置及驱动方法[P]. CN104675808A,2015-06-03.[33]. 赵恩铭,刘春兰,张羽,张亚勋,刘志海,苑立波. 一种微小粒子排布装置及其制作方法[P]. CN104678499A,2015-06-03.[34]. 张羽,赵莉,赵恩铭,张亚勋,刘志海,苑立波. 一种基于光热效应的光纤光开关[P]. CN104678503A,2015-06-03.[35]. 刘志海,雷皎洁,张羽,赵恩铭,张亚勋,苑立波. 一种光纤光开关[P]. CN104678546A,2015-06-03.[36]. 刘志海,梁佩博,赵恩铭,张羽,张亚勋,苑立波. 一种微光纤光开关[P]. CN104678594A,2015-06-03.[37]. 周爱,张亚勋,许全,杨军,苑立波. 一种基于空心环形波导光纤的温度传感器[P]. CN103940530A,2014-07-23.[38]. 周爱,秦铂洋,张亚勋,杨军,苑立波. 基于空心内壁波导光纤的微环形谐振器及其制作方法[P]. CN103941339A,2014-07-23.[39]. 周爱,张亚勋,许全,杨军,苑立波. 一种折射率不敏感的光纤温度传感器[P]. CN103852191A,2014-06-11.研究领域
纤维集成光学、光纤传感技术、特种光纤技术、光纤光镊、生物波导等""近期论文
[1]. Liu Zhihai, Tang Xiaoyun, Zhang Yaxun*, et al. Simultaneous Trapping of Low-Index and High-Index Microparticles Using a Single Optical Fiber Bessel Beam[J].Optics and Lasers in Engineering, 2020, 131: 106119.[2]. Zhang, Yu; Lin, Siyu; Liu, Zhihai; Zhang, Yaxun*; Zhang, Jianzhong; Yang, Jun; Yuan, Libo. Laser-induced rotary micromotor with high energy conversion efficiency[J]. Photonics research, 2020, 8(4): 534-538.[3]. Zhang Y, Liu M, Zhang Yaxun*, et al. Simultaneous measurement of temperature and refractive index based on a hybrid surface plasmon resonance multimode interference fiber sensor[J]. Applied Optics, 2020, 59(4): 1225-1229.[4]. Zhang Y, Li Y, Liu C, Liu Z, Zhang Yaxun*, et al. Dual-channel microfluidic sensor based on side-hole fiber with two long-period fiber gratings[J]. Chinese Optics Letters, 2020, 18 (2): 20601.[5]. Tang X, Zhang Y, Zhang Yaxun*, et al. All-fiber active tractor beam generator and its application[J]. Journal of Lightwave Technology, 2020, 38(6): 1420-1426.[6]. Tang X, Zhang Y, Su W, Zhang Yaxun*, et al. Super-low-power optical trapping of a single nanoparticle[J]. Optics letters, 2019, 44(21): 5165-5168.[7]. Zhang Y, Tang X, Zhang Yaxun*, et al. Optical attraction of strongly absorbing particles in liquids[J]. Optics express, 2019, 27(9): 12414-12423.[8]. Liu L, Zhang M, Zhang Y*, Zhang Yaxun*. Spider silk-based humidity sensor [J]. Optics Letters, 2019, 44(11).[9]. Zhang Y, Zhang Yaxun*, Liu Z*, et al. Laser-Induced Microsphere Hammer-Hit Vibration in Liquid[J]. Physical review letters, 2018, 121(13): 133901.[10]. Liu Z, Yang X, Zhang Y, Zhang Yaxun*, et al. Hollow fiber SPR sensor available for microfluidic chip[J]. Sensors and Actuators B: Chemical, 2018, 265: 211-216.[11]. Zhang Y, Tang X, Zhang Yaxun*, et al. 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam[J]. Optics letters, 2018, 43(12): 2784-2786.[12]. Zhang Yaxun, Tang X, Zhang Y, et al. Multiple Particles 3-D Trap Based on All-Fiber Bessel Optical Probe[J]. Journal of Lightwave Technology, 2017, 35(18): 3849-3853.[13]. Zhang Yaxun, Wang T, Liu Z, et al. Simple and high efficient graded-index multimode fiber tweezers: simulation and experiment[J].Chinese Optics Letters,2017,15(6):061402.[14]. Zhang Yaxun, Zhang Y, Wang Z, et al. A novel Michelson Fabry–Perot hybrid interference sensor based on the micro-structured fiber [J].Optics Communications, 2016, 374.[15]. Zhang Yaxun, Zhou A, Qin B, et al. Simultaneous measurement of temperature and curvature based on hollow annular core fiber[J].IEEE Photonics Technology Letters, 2014,26(11):1128~ 1131 .[16]. Zhang Yaxun, Zhou A, Qin B, et al. Refractive index sensing characteristics of single-mode fiber-based modal interferometers[J]. Journal of Lightwave Technology, 2014, 32(9):1734~1740.[17]. Zhang Y, Liang P, Wang Y, Zhang Yaxun*, et al. Cascaded distributed multichannel fiber spr sensor based on gold film thickness adjustment approach[J]. Sensors and Actuators A: Physical, 2017, 267: 526-531.[18]. Liu Z, Liu C, Zhang Y, Zhang Yaxun*, et al. Fiber-Based Helical Channels Refractive Index Sensor Available for Microfluidic Chip[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2087-2090.[19]. Liu Z, Zhang Yaxun, Zhang Y, et al. All-fiber self-accelerating Bessel-like beam generator and its application[J]. Optical Letters, 2014, 39(21):6185~6188.[20]. Deng H, Zhang Yaxun, Yuan T, et al. Fiber-based optical gun for particle shooting[J]. ACS Photonics, 2017, 4(3): 642-648.[21]. Zhou A, Zhang Yaxun, Quan X, et al. Semi-open cavity in-fiber Mach-Zehnder interferometer for temperature measurement with ultra-high sensitivity[J]. Applied Optics, 2014, (12):2696~2701.[22]. Zhang Y, Lei J, Zhang Yaxun, et al. Microparticles controllable accumulation, arrangement, and spatial shaping performed by tapered-fiber-based laser-induced convection flow[J]. Scientific reports, 2017, 7(1): 14378.[23]. Zhang Yaxun*, Liu C, Zhang Y, et al. A novel method to generate a self-accelerating Bessel-like beam based on graded index multimode optical fiber[C]. 24th International Conference on Optical Fibre Sensors, OFS 2015, Curitiba, Brazi, 2015.9.28-2015.10.2.[24]. Zhang Yaxun, Zhou A, Xu Q, et al. Refractive index insensitive temperature sensor based on hollow annular core fiber Mach-Zehnder interferometer[C]. 23rd International Conference on Optical Fibre Sensors, Santander, Spain, 2014.6.2-2014.6.6.[25]. Zhang Yaxun, Wang L, Liu Z. The polishing detection method of side-polished fiber[C].2011 International Conference on Optical Instruments and Technology: Solid State Lighting and Display Technologies,2011.11.6-2011.11.9. [26]. Zhang Yaxun*, Tang X, Zhang Y, et al. A Single Optical Fiber Tweezers with High Trapping Efficiency Based on Bessel-like Beams[C]. Asia-Pacific Optical Sensors Conference 2016, Shanghai China, 2016.10.11-2016.10.14.[27]. Liu Z, Zhang Yaxun, Wang Z, et al. A hybrid Michelson-FP interference fiber sensor[C]. 24th International Conference on Optical Fibre Sensors, OFS 2015, Curitiba, Brazil, 2015.9.28-2015.10.2.[28]. Liu Z, Tang X, Zhang Y, Zhang Yaxun*, A Non-contact Single Optical Fiber Multi-optical Tweezers Based on Bessel-like Beams[C]. Asia Pacific Optical Sensors Conference, Shanghai China, 2016.10.11-2016.10.14. [29]. Liu Z, Wang T, Zhang Yaxun, et al. Single fiber dual-functionality optical tweezers based on graded-index multimode fiber[J]. Chinese Optics Letters, 2018, 16(5): 053501.[30]. Zhang Y, Tang X, Zhang Yaxun*, et al. 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam[J]. Optics letters, 2018, 43(12): 2784-2786.[31]. Zhu Z, Liu L, Liu Z, Zhang Y, Zhang Yaxun. High-precision micro-displacement optical-fiber sensor based on surface plasmon resonance[J]. Optics Letters, 2017, 42(10): 1982-1985.[32]. Zhu Z, Liu L, Liu Z, Zhang Y, Zhang Yaxun. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit[J]. Optics letters, 2017, 42(15): 2948-2951.[33]. Liu Z, Liu L, Zhu Z, Zhang Y, Wei Y, Zhang Yaxun, et al. Dual-channel surface plasmon resonance refractive index sensor based on modified hetero-core structure fiber[J]. Optics Communications, 2017, 403: 290-295.[34]. Liu Z, Zhang Z, Zhang Y, Zhang Yaxun, et al. Absorbing particle 3D trap based on annular core fiber tweezers[J]. Optics Communications, 2019, 437: 399-402.[35]. Liu Z, Lei J, Zhang Y, Zhang Yaxun, et al. All-fiber impurity collector based on laser-induced microbubble[J]. Optics Communications, 2019, 439: 308-311.[36]. Zhang Y, Li Y, Zhang Yaxun, et al. HACF-based optical tweezers available for living cells manipulating and sterile transporting[J]. Optics Communications, 2018, 427: 563-566.[37]. Liu Z, Wu J, Zhang Y, Zhang Yaxun, et al. Optical trapping and axial shifting for strongly absorbing particle with single focused TEM00 Gaussian beam[J]. Applied Physics Letters, 2018, 113(9): 091101.[38]. Liu Z H, Lei J J, Zhang Y, Zhang Yaxun et al. Microparticle collection for water purification based on laser-induced convection[J]. Chinese Physics B, 2018, 27(5): 054209.[39]. Zhou A, Qin B, Zhu Z, Zhang Yaxun, et al. Hybrid structured fiber-optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature[J]. Optics letters, 2014, 39(18): 5267-5270. 相关热点