赵静
近期热点
资料介绍
个人简历
授权专利与登记软件著作权如下:[1] 孙仕亮、戴海威、赵静. 一种基于变分BP-HMM的人的行为轨迹识别方法:中 国,201610292431.9.(发明专利,已授权)[2] 赵静孙仕亮 基于高斯过程动态系统的多视图机器人手臂控制软件V1.0 2019SR1056349.(软件著作权,已登记)[3] 赵静孙仕亮 基于高阶高斯过程动态系统的多视图交通流预测软件V1.0 2019SR1056342.(软件著作权,已登记)研究领域
模式识别与机器学习:概率模型,近似推理,核方法,序列数据建模""近期论文
[1]S. Sun(#), Z. Cao, H. Zhu, and J. Zhao(*). A Survey of Optimization Methods from a Machine Learning Perspective. IEEE Transactions on Cybernetics (T-CYB), 50:3668-3681, 2020. ( SCI一区期刊, IF:10.387).[2]J. Zhao(#), S. Sun(*), H. Wang and Z. Cao. Promoting Active Learning with Mixtures of Gaussian Processes. Knowledge-Based Systems (KBS), 188: 1-12, 2020. (SCI二区期刊,IF:5.101)[3]J. Zhao(#), X. Liu, S. He, S. Sun(*). Probabilistic inference of Bayesian neural networks with generalized expectation propagation. Neurocomputing, 412: 392-398, 2020. (SCI二区期刊,IF:4.438)[4]Y. Hu(#), S. Sun(*), X. Xu, J. Zhao. Attentive multi-view reinforcement learning. International Journal of Machine Learning and Cybernetics, 2020. (SCI三区期刊,IF:3.753)[5]H. Zhu(#), J. Zhao(*), S. Sun. Multi-view Deep Gaussian Process with a Pre-training Acceleration Technique. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pp. 299-311, 2020. (CCF C类会议)[6]Z. Dong(#), J. Zhao(*), and S. Sun(*). A Conditional Random Fields Based Framework for Multiview Sequential Data Modeling. Proceedings of the 26th International Conference on Neural Information Processing (ICONIP), pp. 1-12, 2019. (CCF C类会议)[7]Y. Hu(#), S. Sun(*), X. Xu and J. Zhao(*). Multi-view Deep Attention Network for Reinforcement Learning. Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), pp.1-2, 2019. (Student Abstract, CCF A类会议)[8]X. Liu(#), J. Zhao(*) and S. Sun(*). Bayesian Adversarial Attack on Graph Neural Networks. Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI), pp.1-2, 2019. (Student Abstract, CCF A类会议)[9]J. Wang(#), J. Zhao(*), S. Sun and D. Shi. Intelligent Educational Data Analysis with Gaussian Processes. Proceedings of the 25th International Conference on Neural Information Processing (ICONIP), pp. 353-362, 2018. (CCF C类会议)[10] J. Fei(#), J. Zhao(#), S. Sun(*) and Yan Liu. Active Learning Methods with Deep Gaussian Processes. Proceedings of the 25th International Conference on Neural Information Processing (ICONIP), pp. 473-483, 2018. (CCF C类会议)[11] J. Chen(#), S. Sun(*), J. Zhao(*). Multi-label active learning with conditional Bernoulli mixtures. Proceedings of the 15th Pacific Rim International Conference on Artificial Intelligence (PRICAI), pp. 954-967, 2018. (CCF C类会议)[12]J. Zhao(#), X. Xie, X. Xu, S. Sun(*). Multi-view learning overview: Recent progress and new challenges. Information Fusion (IF), pp. 43-54, 2017. (SCI一区期刊, IF:10.716,ESI高被引论文,Top 1%)[13]H. Wang(#) and J. Zhao(#) and Z. Tang and S. Sun(*). Educational and Non-educational Text Classification Based on Deep Gaussian Processes. Proceedings of the 24th International Conference on Neural Information Processing (ICONIP), pp. 415-423, 2017. (CCF C类会议)[14]C. Luo(#), S. Sun, J. Zhao(*). Variational hidden conditional random fields with beta processes. Proceedings of the 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 1887-1893, 2017. (EI会议)[15]J. Zhao(#) and S. Sun(*). Variational Dependent Multi-output Gaussian Process Dynamical Systems. Journal of Machine Learning Research (JMLR), 17: 1-36, 2016. (CCF A类期刊,IF:4.091)[16]J. Zhao(#) and S. Sun(*). High-Order Gaussian Process Dynamical Models for Traffic Flow prediction. IEEE Transactions on Intelligent Transportation Systems (TITS), 17: 2014-2019, 2016. (SCI二区期刊, IF:5.744)[17]M. Yin(#), J. Zhao(#), S. Sun(*). Key course selection for academic early warning based on Gaussian processes. The 17th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), pp. 240-247, 2016. (EI会议)[18]J. Zhao(#) and S. Sun(*). Revisiting Gaussian Process Dynamical Models. In Proceedings of the 24th International Joint Conference Artificial Intelligence (IJCAI), pp. 1047-1053, 2015. (CCF A类会议)[19]S. Sun(#)(*) and J. Zhao and J. Zhu. A Review of Nyström Methods for Large-Scale Machine Learning. Information Fusion (IF), 26:36-48, 2015. (SCI一区期刊,IF:10.716)[20]S. Sun(#)(*) and J. Zhao and Q. Gao. Modeling and Recognizing Human Trajectories with Beta Process Hidden Markov Models. Pattern Recognition (PR), 48: 2407-2417, 2015. (SCI二区期刊,IF:5.898)[21]J. Zhao(#) and S. Sun(*). Variational Dependent Multi-output Gaussian Process Dynamical Systems. In Proceedings of the 17th International Conference of Discovery Science (DS), 8777: 350-361, 2014. (EI会议)上海市计算机学会人工智能专委会秘书长SCI期刊International Journal of Machine Learning and Cybernetics (JMLC) 副编辑Information Fusion, IEEE Transactions on Intelligent Transportation System, Neurocomputing, Neural Processing Letter, Intelligent Data Analysis等国际期刊审稿人标签: 计算机科学与技术学院 华东师范大学
相关热点