朱升峰
近期热点
资料介绍
个人简历
教育背景 • 2006年6月获浙江大学理学学士学位(数学系:信息与计算科学专业) • 2011年6月获浙江大学理学博士学位(数学系:计算数学) 工作经历 • 2014.12至今 华东师范大学数学科学学院 副教授 • 2011.07-2014.11 华东师范大学数学系 讲师 • 2013.11-2014.11 洛桑联邦理工学院 博士后 访学交流 • 2019.07 中科院计算数学与科学工程计算研究所 • 2017.01 米兰理工大学 • 2016.07 北京应用物理与计算数学研究所项目主持• 国家自然科学基金面上项目 2021. 01-2024. 12 形状和拓扑优化的高精度形状梯度数值方法研究(No.12071149)• 上海市自然科学基金面上项目 2019. 07-2022. 06 分布式形状梯度的有限元高精度理论及其在形状设计中的应用(No.19ZR1414100)• 国家自然科学基金青年项目 2013. 01-2015. 12 粘性不可压缩流体形状优化的快速水平集和自适应方法(No.11201153)• 华东师范大学科研创新基金 2012. 01-2013. 12 不可压流体形状优化和控制的自适应方法研究参与• 科技部, 科技创新 2030-“新一代人工智能”重大项目子课题• 国家自然科学基金面上项目2项• 国家自然科学基金青年项目2项• 横向项目1项研究领域
微分方程数值解:有限元方法、等几何分析形状优化:灵敏度分析、水平集方法数据分析:降阶建模、特征正交分解""近期论文
Preprints[40] J. Zhang, S. Zhu, C. Liu and X. Shen, A two-grid binary level set method for eigenvalue optimization, submitted. [39] C. Liu, X. Hu, and S. Zhu, A two-grid binary level set method for structural topology optimization, submitted. [38] C. Liu and S. Zhu, On finite element approximations to a shape gradient flow in shape optimization of elliptic problems, submitted. [37] X. Shen, Y. Xue, Q. Yang, and S. Zhu, Finite element method coupling penalty method for flexural shell model, submitted. [36] J. Li and S. Zhu, X. Shen, On mixed finite element approximations of shape gradients in shape optimization with the Navier-Stokes equation, submitted. [35] L. Guo, Q. Wu, and S. Zhu, Level-set method based on isogeometric analysis for topology optimization, submitted. [34] R. Li, Q. Wu, and S. Zhu, B-spline Galerkin proper generalized decomposition, submitted. [33] W. Gong and S. Zhu, On discrete shape gradients of boundary type for PDE-constrained shape optimization, revision submitted. [32] F. Soleymani and S. Zhu, Fully spatial-temporal graded mesh scheme for time-fractional European and American option pricing model, submitted, 2020. Publications [31] F. Soleymani and S. Zhu, RBF–FD solution for a financial partial–integro differential equation utilizing the generalized multiquadric function, Computers & Mathematics with Applications, accepted, 2020. [30] R. Li, Q. Wu, and S. Zhu, Isogeometric analysis with proper orthogonal decomposition for elastodynamics, Communications in Computational Physics, accepted, 2020. [29] J. Li and S. Zhu, On distributed H1 shape gradient flows in optimal shape design of Stokes flows: convergence analysis and numerical applications, Journal of Computational Mathematics, accepted, 2020. [28] X. Hu and S. Zhu, Isogeometric analysis for time-fractional partial differential equations, Numerical Algorithms, 85 (2020) 909-930. [27] S. Zhu, X. Hu, and Q. Liao, Convergence analysis of Galerkin finite element approximations to shape gradients in eigenvalue optimization. BIT Numerical Mathematics, 60 (2020) 853-878. [26] S. Zhu, X. Hu, Q. Wu, On accuracy of approximate boundary and distributed H1 shape gradient flows for eigenvalue optimization. Journal of Computational and Applied Mathematics, 365 (2020), 112374. [25] J. Li, S. Zhu, Shape identification in Stokes flow with distributed shape gradients, Applied Mathematics Letters, 95 (2019) 165-171. [24] R. Li, Q. Wu, S. Zhu: Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection-diffusion-reaction problems, Journal of Computational Physics, 387 (2019) 280-302. [23] P. Dai, Q. Wu, S. Zhu: Quasi-Toeplitz splitting iteration methods for unsteady space-fractional diffusion equations, Numerical Methods for Partial Differential Equations, 35 (2019) 699-715. [22] X. Shen, J. Jia, S. Zhu, H. Li, L. Bai, T. Wang, X. Cao: The time-dependent generalized membrane shell model and its numerical computation, Computer Methods in Applied Mechanics and Engineering, 344 (2019) 54-70. [21] S. Zhu, Z. Gao: Convergence analysis of mixed finite element approximations to shape gradients in the Stokes equation,Computer Methods in Applied Mechanics and Engineering, 343 (2019) 127-150. [20] S. Wu, X. Hu, S. Zhu: A multi-mesh finite element method for phase-field based photonic band structure optimization, Journal of Computational Physics, 357 (2018) 324-337. [19] S. Zhu: Effective shape optimization of Laplace eigenvalue problems using domain expressions of Eulerian derivatives, Journal of Optimization Theory and Applications, 176 (2018) 17-34. [18] S. Zhu, X. Hu, Q. Wu: A level set method for shape optimization in semilinear elliptic problems, Journal of Computational Physics, 355 (2018) 104-120. [17] S. Zhu, L. Dede, A. Quarteroni: Isogeometric analysis and proper orthogonal decomposition for the acoustic wave equation, ESAIM Mathematical Modelling and Numerical Analysis, 51 (2017) 1197-1221. [16] S. Zhu, L. Dede, A. Quarteroni: Isogeometric analysis and proper orthogonal decomposition for parabolic problems, Numerische Mathematik, 135 (2017) 333-370. [15] H. Wang, D. Yang, S. Zhu: Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations, Journal of Scientific Computing, 70 (2017) 429-449. [14] H. Wang, D. Yang, S. Zhu: A Petrov-Galerkin finite element method for variable-coefficient fractional diffusion equations, Computer Methods in Applied Mechanics and Engineering, 290 (2015) 45-56. [13] C. Liu, S. Zhu: Laguerre pseudospectral approximation to the Thomas-Fermi equation, Journal of Computational and Applied Mathematics 282 (2015) 251-261. Matlab Code [12] H. Wang, D. Yang, S. Zhu: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations, SIAM Journal on Numerical Analysis 52 (2014) 1292-1310. Matlab Package [11] C. Liu, S. Zhu: A convex relaxation method to compute exact global solutions for multiplicative noise removal, Journal of Computational and Applied Mathematics 238 (2013) 144-155. [10] Y. Peng, S. Zhu: Numerical asymptotic solutions to a class of singularly perturbed initial value problems, (Chinese) Commun. Appl. Math. Comput. 27 (2013) 363-371. [09] C. Liu, D. Kong, S. Zhu: A primal-dual hybrid gradient algorithm to solve the LLT model for image denoising, Numerical Mathematics: Theory, Methods and Applications 5 (2012) 260-277. [08] S. Zhu, H. Zhu, Q. Wu, Y. Khan: An adaptive algorithm for the Thomas-Fermi equation, Numerical Algorithms 59 (2012) 359-372. [07] C. Liu, F. Dong, S. Zhu, D. Kong, K. Liu: New variational formulations for level set evolution without reinitialization with applications to image segmentation, Journal of Mathematical Imaging and Vision 41 (2011) 194-209. [06] S. Zhu, X. Dai, C. Liu: A variational binary level set method for elliptic shape optimization problems, International Journal of Computer Mathematics 88 (2011) 3026-3045. [05] S. Zhu, Q. Wu, C. Liu: Shape and topology optimization for elliptic boundary value problems using a variational piecewise constant level set method, Applied Numerical Mathematics 61 (2011) 752-767. [04] C. Liu, S. Zhu: A semi-implicit binary level set method for source reconstruction problems, International Journal of Numerical Analysis and Modeling 8 (2011) 410-426. [03] S. Zhu, C. Liu, Q. Wu: Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum, Computer Methods in Applied Mechanics and Engineering 199 (2010) 2970-2986. [02] S. Zhu, Q. Wu, C. Liu: Variational piecewise constant level set methods for shape optimization of a two-density drum, Journal of Computational Physics 229 (2010) 5062-5089. [01] S. Zhu, Q. Wu, X. Cheng: Numerical solution of the Falkner-Skan equation based on quasilinearization, Applied Mathematics and Computation 215 (2009) 2472-2485. 相关热点