王兆慧
近期热点
资料介绍
个人简历
教育经历 2006年09月--2009年07月 中国科学院化学研究所‚物理化学‚理学博士2003年09月--2006年07月 中南大学资源加工与生物工程学院‚微生物学‚理学硕士1999年09月--2003年06月 中南大学资源加工与生物工程学院‚矿物加工工程‚工学学士工作经历 先后就职于东华大学任讲师、副教授,澳大利亚南十字星大学和纽卡斯尔大学任高级研究员(Senior Research Fellow), 2018年7月正式就职于华东师范大学。开授课程 《工程伦理》工程硕士必修课《环境化学》本科生专业课科研项目 [1]国家自然科学基金面上项目,41977313,主持[2]国家自然科学基金面上项目,21677031,主持[3]国家自然科学基金面上项目,41273108,主持[4]国家自然科学基金青年科学基金项目, 21007009,主持[5]国家重点研发计划子课题, 2020-2023, 主持[6]上海科委国际合作项目,2019-2021,主持[7]教育部博士点新教师基金, 20100075120010, 主持[8]上海市科委“浦江”人才计划项目,15PJ1400400, 主持[9]上海市教委/上海市教育发展基金会,“晨光”人才计划项目, 10CG34 , 主持研究领域
""变价元素在自然和工程体系中的环境氧化还原化学, 包括:高级氧化技术变价元素环境地球化学环境瞬态物种识别""""近期论文
2018.7之后论文(1) Guo, Y., Zhao, Y., Lou, X., Zhou, T., Wang, Z**., Fang, C., Guan, J., Chen, S., Xu, X., Zhang, R-Q. (2020)Efficient degradation of industrial pollutants with sulfur(IV) mediated byLiCoO2 cathode powders of spent lithium ion batteries: A“treating wastewith waste” strategy. Journal of Hazardous Materials, 399, 123090(2) Yuan, R., Jiang, Z., Wang, Z., Gao, S., Liu, Z., Li, M., & Boczkaj, G. (2020). Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: A novel micro-macro catalyst for peroxymonosulfate activation. Journal of Colloid and Interface Science.571, 142-154(3) Yang, X., Cai, J., Wang, X., Li, Y., Wu, Z., Wu, W. D., Chen, X., Sun, J., Sun, S.,Wang, Z. (2020). A bimetallic Fe-Mn Oxide-Activated Oxone for In Situ Chemical Oxidation (ISCO) of Trichloroethylene in Groundwater: Efficiency, Sustained Activity and Mechanism Investigation. Environmental Science & Technology. 54, 3714−3724(4) Jannah, Z. J. R., Lim, J. W., Wang, Z., Ding, D., Chua, Y. S., Ng, S. L., Oh, W. D. (2020). In situ nitrogen functionalization of biochar via one-pot synthesis for catalytic peroxymonosulfate activation: Characteristics and performance studies. Separation and Purification Technology, 116702.(5) Sheng, B., Zhou, X., Shi, Z., Wang, Z.**, Guo, Y., Lou, X., Liu, J. (2020). Is addition of reductive metals (Mo, W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation?. Journal of Hazardous Materials, 386, 121877.(6) Liu, T., Zhang, Z., Wang, Z., Wang, Z. L., Bush, R. (2019). Highly efficient and rapid removal of arsenic (III) from aqueous solutions by nanoscale zero-valent iron supported on a zirconium 1, 4-dicarboxybenzene metal–organic framework (UiO-66 MOF). RSC Advances, 9(67), 39475-39487.(7) Wang, Z.**, Wang, X., Yuan, R., Xiao, D. (2020). Resolving the kinetic and intrinsic constraints of heat-activatedperoxydisulfate oxidation of iopromide in aqueous solution, Journal of Hazardous Materials 384, 121281.(8) Sheng, B., Yang, F., Huang, Y., Wang, Z.**, Yuan, R., Guo, Y., Lou, X., Liu, J. (2020). Transformation of endogenic and exogenic Cl/Br in peroxymonosulfate-based processes: The importance of position of Cl/Br attached to the phenolic ring. Chemical Engineering Journal, 381, 122634.(9) Wang, Z.**, Liu, Q., Yang, F., Huang, Y., Xue, Y., Yuan, R., Sheng, B., Wang, X. (2019). Accelerated oxidation of 2, 4, 6-trichlorophenol in Cu (II)/H2O2/Cl-system: A unique “halotolerant” Fenton-like process?. Environment international, 132, 105128.(10) Yang, F., Sheng, B., Wang, Z.**, Yuan, R., Xue, Y., Wang, X., Liu, Q., Liu, J. (2019) An often-overestimated adverse effect of halides in heat/persulfate-based degradation of wastewater contaminants. Environment International 130, 104918 (JIF 7.297)(11) Sheng, B., Yang, F., Wang, Y., Wang, Z.**, Li, Q., Guo, Y., Lou, X., Liu, J. (2019). Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe (II)/PMS. Chemical Engineering Journal, 375,121989.(12) Wang, L., Zhu, Y., Yang, D., Zhao, L., Ding, H., Wang, Z.**. (2019). The mixed marriage of copper and carbon ring-g-C3N4 nanosheet: A visible-light-driven heterogeneous Fenton-like catalyst. Applied Surface Science 488, 728-738. (13) Huang, Y., Sheng, B., Yang, F., Wang, Z.**, Tang, Y., Liu, Q., Wang, X., Liu, J. (2019). Chlorine incorporation into dye degradation by-product (coumarin) in UV/peroxymonosulfate process: A negative case of end-of-pipe treatment. Chemosphere 229, 374-382. (14) Wang, X., Wang, Z.**, Tang, Y., Xiao, D., Zhang, D., Huang, Y., Guo, Y., Liu, J. (2019). Oxidative degradation of iodinated X-ray contrast media (iomeprol and iohexol) with sulfate radical: An experimental and theoretical study. Chemical Engineering Journal 368, 999-1012. (15) Yuan, R., Jiang, M., Gao, S., Wang, Z.**, Wang, H., Boczkaj, G., Liu, Z., Ma, J., Li, Z. (2019). 3D mesoporous α-Co (OH) 2 nanosheets electrodeposited on nickel foam: A new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation. Chemical Engineering Journal 380, 122447.(16) Yuan, R., Liu, J., Li, Z., Chen, Y., Wang, Z.**, Liu, Z., Jing, G., Zhu, Y., Wang, H. (2019). Ultrahigh-flux (> 190,000 L· m-2 h-1) separation of oil and water by a robust and durable Cu(OH)2 nanoneedles mesh with inverse wettability. Journal of Colloid and Interface Science 555, 569–582.(17) Li, S., Hu, S., Jiang, W., Zhang, J., Xu, K., Wang, Z.**. (2019). In situ construction of WO3 nanoparticles decorated Bi2MoO6 microspheres for boosting photocatalytic degradation of refractory pollutants.Journal of Colloid and Interface Science556, 335–344.(18) Huang, Y., Sheng, B., Wang, Z.**, Liu, Q., Yuan, R., Xiao, D., Liu, J. (2018). Deciphering the degradation/chlorination mechanisms of maleic acid in the Fe (II)/peroxymonosulfate process: An often overlooked effect of chloride. Water Research 145, 453-463. 2018.6之前论文[1]Yuan, R., Hu, L., Yu, P., Wang, Z.**, Wang, H., Fang, J. (2018) Co3O4 nanocrystals/3D nitrogen-doped graphene aerogel: A synergistic hybrid for peroxymonosulfate activation toward the degradation of organic pollutants. Chemosphere 210, 877-888 (JIF 4.427)[2]Xiao, J., Zhou, J., Wang, Z.**, Li, S., Zhang, W., Fang, C., Guo, Y., Xiao, D., Lou, X., Liu, J. (2018) Extraction of copper and zinc from naturally contaminated copper mine soils: Chemical fractionation analysis and risk assessment. Journal of Central South University 25, 1274−1284. (JIF 0.761)[3]Li, S., Hu, S., Jiang, W., Liu, Y., Zhou, Y., Liu, J. Wang, Z.** (2018) Facile synthesis of cerium oxide nanoparticles decorated flower-like bismuth molybdate for enhanced photocatalytic activity toward organic pollutant degradation. Journal of Colloid and Interface Science 530, 171–178 (JIF 5.091)[4]Yang, F., Huang, Y., Fang, C., Xue, Y., Ai, L., Liu, J., Wang, Z.**. (2018) Peroxymonosulfate/base process in saline wastewater treatment: The fight between alkalinity and chloride ions. Chemosphere 199, 84-88 (JIF 4.427)[5]Yuan, R., Hu, L., Yu, P., Wang, H., Wang, Z.**, Fang, J. (2018) Nanostructured Co3O4 grown on nickel foam: An efficient and readily recyclable 3D catalyst for heterogeneous peroxymonosulfate activation. Chemosphere 198, 204-215 (JIF 4.427)[6]Jiang, B., He, H., Xin, S., Tang, Y., Luo, S., Wang, Z.** (2018) pH-dependent roles of polycarboxylates in electron transfer between Cr(VI) and environmentally relevant weak electron donors. Chemosphere 197, 367-374 (JIF 4.427)[7]Sheng, B., Huang, Y., Wang, Z.**, Yang, F., Ai, L., Liu, J. (2018) On peroxymonosulfate-based treatment of saline wastewater: when phosphate and chloride co-exist. RSC Advances 8, 13865–13870 (JIF 2.936)[8]Huang, Y., Wang, Z.**, Liu, Q., Wang, X., Yuan, Z. and Liu, J., (2017) Effects of chloride on PMS-based pollutant degradation: A substantial discrepancy between dyes and their common decomposition intermediate (phthalic acid). Chemosphere 187C, 338-346. (JIF 4.427)[9]Wang, Z.**, Sun, L., Lou, X., Yang, F., Feng, M. and Liu, J., (2017) Chemical instability of graphene oxide following exposure to highly reactive radicals in advanced oxidation processes. Journal of Colloid and Interface Science507, 51-58. (JIF 5.091)[10]Wang, Z.**, Ai, L., Huang, Y., Zhang, J., Li, S., Chen, J., Yang, F. (2017) Degradation of azo dye with activated peroxygens: when zero-valent iron meets chloride. RSC Advances 7, 30941–30948. (JIF 2.936)[11]Fang, C., Wang, Z.**, Feng, M., Huang, Y., Yang, F. and Liu, J. (2017) Trace bromide ion impurity leads to formation of chlorobromoaromatic by-products in peroxymonosulfate-based oxidation of chlorophenols. Chemosphere 182, 624-629. (JIF 4.427)[12]Li, S., Hu, S., Jiang, W., Liu, Y., Liu, J. and Wang, Z. (2017) Synthesis of n-type TaON microspheres decorated by p-type Ag2O with enhanced visible light photocatalytic activity. Molecular Catalysis 435, 135-143. (JIF 3.958)[13]Lou, X., Fang, C., Geng, Z., Jin, Y., Xiao, D., Wang, Z.**, Liu, J. and Guo, Y. (2017) Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism. Chemosphere 173, 529-534. (JIF 4.427)[14]Fang, C., Lou, X., Huang, Y., Feng, M., Wang, Z.** and Liu, J. (2017) Monochlorophenols Degradation by UV/Persulfate Is Immune to the Presence of Chloride: Illusion or Reality?. Chemical Engineering Journal 323, 124–133. (JIF 6.735)[15]Li, S., Hu, S., Jiang, W., Liu, Y., Liu, J. and Wang, Z.**(2017) Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science 501, 156–163. (JIF 5.091)[16]Huang, Y., Yang, F., Ai, L., Feng, M., Wang, C., Wang, Z.** and Liu, J. (2017) On the kinetics of organic pollutant degradation with Co2+/peroxymonosulfate process: When ammonium meets chloride. Chemosphere 179, 331-336. (JIF 4.427)[17]Li, S., Hu, S., Xu, K., Jiang, W., Liu, J. and Wang, Z.** (2017) A Novel Heterostructure of BiOI Nanosheets Anchored onto MWCNTs with Excellent Visible-Light Photocatalytic Activity. Nanomaterials 7(1), 22. (JIF 3.504)[18]Wang, Z.**, Feng, M., Fang, C., Huang, Y., Ai, L., Yang, F., Xue, Y., Liu, W. and Liu, J. (2017) Both degradation and AOX accumulation are significantly enhanced in UV/peroxymonosulfate/4-chlorophenol/Cl− system: two sides of the same coin?. RSC Advances 7(20): 12318-12321. (JIF 2.936)[19]Choppala, G., Bush, R., Moon, E., Ward, N., Wang, Z., Bolan, N. and Sullivan, L. (2017) Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: implications for trace metals mobilisation. Journal of Environmental Management, 186, 158-166. (JIF 4.005)[20]Liu, W., Fang, C., Huang, Y., Ai, L., Yang, F., Wang, Z.**, Liu, J. (2016) Is UV/Ce(IV) process a chloride-resistant AOPs for organic pollutants decontamination? RSC Advances 6, 93558-93563. (JIF 2.936)[21]Huang, Y., Wang, Z.**, Fang, C., Liu, W., Lou, X., Liu, J. (2016) Importance of reagent addition order in contaminant degradation in an Fe(II)/PMS system. RSC Advances 6, 70271-70276. (JIF 2.936)[22]Lou, X., Xiao, D., Fang, C., Wang, Z., Liu, J., Guo, Y., Lu, S. (2016)Comparison of UV/hydrogen peroxide and UV/peroxydisulfate processes for the degradation ofhumic acid in the presence of halide ions. Environmental Science and Pollution Research23, 4778-4785. (JIF2.800)[23]Fang, C., Xiao, D., Liu, W., Lou, X., Zhou, J., Wang, Z.**, Liu, J.**(2016)Enhanced AOX accumulation and aquatic toxicity during 2,4,6-trichlorophenol degradation in a Co(II)/peroxymonosulfate/Cl– system. Chemosphere 144, 2415–2420. (JIF 4.427)[24]Jiang, B., Wang, X., Liu, Y., Wang, Z., Zheng, J., Wu, M. (2016)The roles of polycarboxylates in Cr(VI)/sulfite reaction system:Involvementof reactive oxygen species and intramolecular electrontransfer. Journal of Hazardous Materials 304, 457–466. (JIF 6.434)[25]Li, X., Wang, Z., Zhang, B., Rykov, A. I., Ahmed, A. I., Wang, J.(2016) FexCo3−xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate. Applied Catalysis B Environmental 181,788–799. (JIF 11.698)[26]Jiang, B., Liu, Y., Zheng, J.**, Tan, M., Wang, Z.**, Wu, M. (2015) Synergetic transformations of multiple pollutants driven by Cr(VI)-sulfite reactions.Environmental Science and Technology 49, 12363-12371.(JIF 6.653)[27]Xiao, D., Lou, X., Liu, R., Guo, Y., Zhou, J., Fang, C., Wang, Z.**, Liu, J. (2015) Fe–catalyzed photoreduction of Cr(VI) with dicarboxylic acid (C2–C5): divergent reaction pathways. Desalination and Water Treatment 56, 1020-1028(JIF 1.383)[28]Ramjaun, N.S., Wang, Z.**, Yuan, R., Liu, J.** (2015):Can electrochemical oxidation techniques really decontaminate saline dyes wastewater? Journal of Environmental Chemical Engineering 3, 1648-1653.[29]Zhou, J., Xiao, J., Xiao, D., Guo, Y., Fang, C., Lou, X., Wang, Z.**, Liu, J. (2015): Transformations of chloro and nitro groups during theperoxymonosulfate-based oxidation of 4-chloro-2-nitrophenol. Chemosphere 134, 446-451. (JIF 4.427)[30]Li, J., Luo, G.**, Gao, Y., Yuan., S., Du, J., Wang, Z. (2015):Quantitative evaluation of potential ecological risk of heavy metals in sewage sludge from three wastewater treatment plants in main urban area of Wuxi, China. Chemistry and Ecology. 31(3), 235-251.(JIF 1.091)[31]Wang, Z.**, Xiao, D., Bush, R. T., Liu, J. (2015): Coprecipitated arsenate inhibits thermal transformation of 2-line ferrihydrite: Implications for long-term stability of ferrihydrite. Chemosphere 122, 88–93. (JIF 4.427)[32]Jiang, B., Guo, J., Zheng, X.**, Wang, Z., Zheng, J., Wu, W., Wu, M.**, Xue, Q. (2015): A green approach towards simultaneous remediations of Chromium(VI) and Arsenic(III) in aqueous solution. Chemical Engineering Journal 262, 1144-1151.(JIF 6.735)[33]Wang, H.,Zhang, L.,Chen, Z.,Hu, J.,Li, S., Wang, Z., Liu, J.**, Wang, X. (2014): Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances.Chemical Society Reviews43, 5234-5244.(JIF 40.182)[34]Lou, X., Wu, L., Guo, Y., Chen, C., Wang, Z.**, Xiao, D., Fang, C., Liu, J., Zhao, J., Lu, S. (2014): Peroxymonosulfate activation by phosphate anion for organics degradation in water. Chemosphere 117, 582–585. (JIF 4.427)[35]Wang, Z.**, Xiao, D., Liu, J. (2014): Diverse redox chemistry of photo/ferrioxalate system.RSC Advances 4, 44654–44658. (JIF 2.936)[36]Guo, Y., Zhou, J., Lou, X., Liu, R., Xiao, D., Fang, C., Wang, Z.**, Liu, J.(2014): Enhanced degradation of tetrabromobisphenol A in water by a UV/base/persulfate system: Kinetics and intermediates. Chemical Engineering Journal 254, 538–544 (JIF 6.735)[37]Wang, Z.**, Bush, R. T., Sullivan, L. A., Chen, C.C., Liu, J. (2014) Selective oxidation of arsenite by peroxymonosulfate with high utilization efficiency of oxidant. Environmental Science and Technology 48, 3978-3985. (JIF 6.653)[38]Yuan, R., Wang, Z.**, Hu, Y., Wang, B., Gao, S. (2014) Probing the radical chemistry in UV/persulfate–based saline wastewater treatment: Kinetics modelling and byproducts identification. Chemosphere 109, 106–112. (JIF 4.427)[39]Liu, R., Xiao, D., Guo, Y., Wang, Z.**, Liu, J. (2014) A novel photosensitized Fenton reaction catalyzed by sandwiched iron in synthetic nontronite. RSC Advances 4, 12958–12963. (JIF 2.936)[40]Wang, Z.** (2014)Probing the importance of planar surfaces and crystal edges for electron transfer within iron-bearing clays.RSC Advances 4, 31476–31480 (JIF 2.936)[41]Xiao, D., Guo, Y., Lou, X., Fang, C., Wang, Z.**, Liu, J. (2014) Distinct effects of oxalate versus malonate on the iron redox chemistry: implications for the Photo–Fenton reaction. Chemosphere 103, 354–358. (JIF 4.427)[42]Wang, Z.**, Liu, J. (2014) New insight into photochemical oxidation of Fe(II): the roles of Fe(III) and reactive oxygen species. Catalysis Today 224, 244–250. (JIF 4.667)[43]Wang, Z.**, Xiao, D., Liu, R., Guo, Y., Lou, X., Liu, J. (2014) Fenton–like degradation of reactive dyes catalyzed by biogenic jarosite. Journal of Advanced Oxidation Technologies 17(1), 104–108. (JIF 0.901)[44]Liu, R., Guo, Y., Wang, Z.**, Liu, J.** (2014): Iron species in layered clay: Efficient electron shuttles for simultaneous conversion of dyes and Cr(VI). Chemosphere 95, 643-646. (JIF 4.427)[45]Guo, Y., Lou, X., Fang, C., Wang, Z.**, Liu, J.** (2013): Novel photo-sulfite system: towards simultaneous transformations of inorganic and organic pollutants. Environmental Science and Technology. 47, 11174−11181 (JIF 6.653)[46]Wang, Z**., Bush, R. T., Liu, J. (2013): Arsenic(III) and Iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands. Chemosphere 93, 1936–1941. (JIF 4.427)[47]Wang, Z**., Bush, R. T., Sullivan, L. A., Liu, J. (2013): Simultaneous redox conversion of chromium(VI) and arsenic(III) under acidic conditions. Environmental Science and Technology 47 (12), 6486–6492. (JIF 6.653)[48]Lou, X., Guo, Y., Xiao, D., Wang, Z.**, Liu, J.** (2013): Rapid dye degradation with reactive oxidants generated by chloride-induced peroxymonosulfate activation. Environmental Science and Pollution Research 20(9), 6317-6323 (JIF 2.800)[49]Guo, Y., Huang, P., Zhang, W., Yuan, X., Fan, F., Wang, H., Liu, J**.,Wang, Z**. (2013): Leaching of heavy metals from Dexing copper mine tailings pond: A laboratory study. Transactions of Nonferrous Metals Society of China 23, 3068-3075 (JIF 1.795)[50]Xu, L., Yuan, R., Guo, Y., Xiao, D., Cao, Y., Wang, Z., Liu, J.** (2013): Effects of chloride ions on degradation of 2,4,6-trichlorophenol by Co(II)/peroxymonosulfate (Co/PMS) system: kinetics and intermediates identification. Journal of Wuhan University (Natural Sciences Edition) 59(1), 51-56. (In Chinese)[51]Xu, L., Yuan, R., Guo, Y., Xiao, D., Cao, Y., Wang, Z.**, Liu, J.** (2013): Sulfate radical-induced degradation of 2,4,6-trichlorophenol: a de novo formation of chlorinated compounds. Chemical Engineering Journal 217,169–173. (JIF 6.735)[52]Wang, Z., Chen, C.**,Ma, W., Ji, H., Zhao, J.** (2012): Photochemical coupling of iron redox reactions and transformation of low-molecular-weight organic matter. Journal of Physical Chemistry Letters 3, 2044 – 2051. (JIF 8.709; Perspective & Cover Article)[53]Yuan, R., Ramjaun, N.S., Wang, Z.**, Liu, J.** (2012): Photocatalytic degradation and chlorination of azo dye in saline wastewater: kinetics and AOX formation. Chemical Engineering Journal 192, 171-178. (JIF 6.735)[54]Yuan, R., Ramjaun, N.S., Wang, Z.**, Liu, J.** (2012): Concentration profiles of chlorine radicals and their significances in •OH-induced dye degradation: Kinetic modeling and reaction pathways. Chemical Engineering Journal 209, 38-45. (JIF 6.735)[55]Guo, Y., Lou, X., Xiao, D., Xu, L., Wang, Z.**, Liu, J. (2012): Sequential reduction-oxidation for photocatalytic degradation of tetrabromobisphenol A: kinetics and intermediates. Journal of Hazardous Materials 241-242, 301–306. (JIF 6.434)[56]Wang, Z., Xie, X., Liu, J.** (2012): Experimental measurements of short-term adsorption of Acidithiobacillus ferrooxidans onto chalcopyrite. Transactions of Nonferrous Metals Society of China 22,442-446. (JIF 1.795)[57]Zhang, W., Wang, Z., Zhang, C. Liu, J.**, Hong, W. (2012): Pilot-scale treatment of mine wastewater by Fenton-HDS combined technology. Chinese Journal of Environmental Engineering 6(4), 1117-1120. (In Chinese)[58]Zhang, M., Tian, S., Zhang, C., Wang, Z., Liu, J**. (2012): Degradation of flotation reagent-butyl xanthate by O3/H2O2. Chinese Journal of Environmental Engineering 6(3), 729-733. (In Chinese)[59]Wang, Z.**, Song, W., Ma, W., Zhao J. (2012): Environmental photochemistry of iron complexes and their involvement in environmental chemical processes. Progress in Chemistry 24,423-432. (JIF 0.820) (In Chinese)[60]Wang, Z., Ma, W., Chen, C., Ji, H., Zhao, J.** (2011): Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy-A mini review. Chemical Engineering Journal 170, 353-362. (JIF 6.735, Cover Article)[61]Chen, X., Ma, W., Li, J., Wang, Z., Chen, C., Ji, H., Zhao, J.** (2011): Photocatalytic Oxidation of organic pollutants catalyzed by an iron complex at biocompatible pH values: using O2 as main oxidant in a Fenton-like reaction. The Journal of Physical Chemistry C 115, 4089–4095. (JIF 4.484)[62]Wang, Z.**, Yuan, R., Guo, Y., Xu, L., Liu, J.** (2011): Effects of chloride ions on bleaching of azo dyes by Co2+/Oxone regent: kinetic analysis. Journal of Hazardous Materials 190, 1083-1087. (JIF 6.434)[63]Yuan, R., Ramjaun, N.S., Wang, Z.**, Liu, J.** (2011): Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. Journal of Hazardous Materials196, 173-179.(JIF 6.434)[64]Ramjaun, N.S., Yuan, R., Wang, Z.**, Liu, J.** (2011): Degradation of reactive dyes by contact glow discharge electrolysis in the presence of Cl- ions: kinetics and AOX formation. Electrochimica Acta 58, 364-371. (JIF 5.116)[65]Wang, Z., Xie, X., Liu, J.** (2011): Numerical modeling of potential profiles in electrical double layer of Acidithiobacillus ferrooxidans cell surface. The Chinese Journal of Nonferrous Metals 21(6), 1485-1490. (In Chinese)[66]Wang, Z., Ma, W., Chen, C., Ji, H., Zhao, J.** (2011): Photodegradation mechanism of chlorophenols pollutants by TiO2 photocatalysis. Scientia Sinica Chimica 41(8), 1286 -1297. (In Chinese)[67]Zhang, C., Liu, J., Wang, H., Wang, Z.** (2011): Treatment of acid-alkali mixed mine wastewater with oxidation process. Journal of Wuhan University (Natural Sciences Edition) 57(2), 179-184. (In Chinese)[68]Zhang, C., Liu, J.**, Pan, B., Wang, Z., Zhan, Y., Zhang, W. (2011): Industrial experiments for treatment of mine wastewater from Dexing copper mine. Metal Mine 40(07), 146-149. (In Chinese)[69]Yuan, R., Ye, J., Wang, Z., Liu, J.** (2011): Dynamic variation characteristics of phosphorus in paddy field runoff in saline land and its potential environmental effect. Journal of Anhui Agricultural Sciences 39(19), 11656-11659. (In Chinese)[70]Ye, J., Yuan, R., Wang, Z., Liu, J.** (2011): Dynamic changes of nitrogen in saline-alkaline paddy field and its potential environmental impacts. Agricultural Sciences and Technology 12(3), 443-446. [71]Wang, Z., Chen, X., Ma, W., Chen, C., Zhao, J.** (2010): Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. Environmental Science and Technology 44,263–268. (JIF 6.653)[72]Wang, Z., Xie, X., Xiao, S., Liu, J.** (2010): Comparative study of interaction between pyrite and cysteine by thermogravimetric and electrochemical techniques. Hydrometallurgy 101, 88-92. (JIF 3.300)[73]Wang, Z., Xie, X., Xiao, S., Liu, J.** (2010): Adsorption behavior of glucose on pyrite surface investigated by TG, FTIR and XRD analyses. Hydrometallurgy 102 (1-4), 87-90. (JIF 3.300)[74]Wang, Z., Ma, W., Chen, C., Zhao, J.** (2009): Light-assisted decomposition of dyes over iron-bearing soil clays in the presence of H2O2. Journal of Hazardous Materials 168, 1246-1252. (JIF 6.434)[75]Wang, Z., Ma, W., Chen, C., Zhao, J.** (2008): Photochemical coupling reactions between Fe(III)/Fe(II), Cr(VI)/Cr(III) and polycarboxylates: inhibitory effect of Cr species. Environmental Science and Technology 42, 7260–7266. (JIF 6.653)[76]Liu, J.**, Wang, Z., Chen, H., Zhang, Y. (2006): Study on interfacial electrokinetic characteristics before and after bioleaching microorganism adhesion to pyrite. Transactions of Nonferrous Metals Society of China 16, 676-680. (JIF 1.795)[77]Liu, J.**, Wang, Z., Li, B., Zhang, Y. (2006): Interaction between pyrite and cysteine. Transactions of Nonferrous Metals Society of China 16, 943-946. (JIF 1.795)[78]Liu, J.**, Xia, H., Wang, Z. (2004): Treatment of waste water from powder blue production with sulfur precipitation-coagulation. Journal of Central South University (Science and Technology) 35, 941-944. (In Chinese)[79]Liu, J.**, Wang, Z., Geng, M., Qiu, G. (2006): Progress in the study of polyphase interfacial interactions between microorganism and mineral in bio-hydrometallurgy. Mining and Metallurgical Engineering 26, 40-44. (In Chinese)[80]Liu, J.**, Xia, H., Wang, Z., Hu,Y. (2004): Investigation of bacterial oxidation activity in heap leaching. Journal of Central South University of Technology 11, 375-379. (JIF 0.761)[1]Chinese Chemical Letters第三届青年编委会委员 (2018-2021)[2]英国皇家化学会RSC Advances副主编(2015-2019)[3]Springer出版社Journal of Soils and Sediments主题编辑(2018-)[4]Frontiers in Nanotechnology副主编[5]澳大利亚南十字星大学、纽卡斯尔大学荣誉教员[6]澳大利亚研究理事会杰出青年基金(FT),优秀青年基金(DE), 面上项目(DP),企业联合基金(LP)和基础设备设施(LIEF)通讯评审人。[7]上海同济高廷耀环保科技发展基金会“青年博士杰出人才奖学金”和国家研究生奖学金(7人次)指导教师。[8]上海市优秀博士学位论文(1人次)、东华大学优秀博士学位论文(4人次)共同指导教师。培养的博士生5人次荣获上海科委扬帆计划和上海教委晨光计划资助。[9]48个国际知名期刊论文评审人,包括:ACS Applied Materials & Interfaces (American Chemical Society); ACS Earth and Space Chemistry (American Chemical Society); ACS Sustainable Chemistry & Engineering (American Chemical Society); Analyst (Royal Society of Chemistry); Applied Catalysis A: General (Elsevier); Applied Catalysis B: Environmental (Elsevier); Applied Organometallic Chemistry (Wiley); Applied Surface Science (Elsevier); Arabian Journal of Chemistry (Elsevier); Carbon (Elsevier); Catalysis Communications (Elsevier); ChemCatChem(Wiley); Chemical Communications (Royal Society of Chemistry); Chemical Engineering Journal (Elsevier); Chemistry of Materials(American Chemical Society); Chemosphere (Elsevier); Critical Reviews in Analytical Chemistry (Taylor & Francis); Current Microbiology (Springer); Desalination (Elsevier); Desalination and Water Treatment (Taylor & Francis); Environmental Science and Pollution Research (Springer); Environmental Science and Technology (American Chemical Society); Environmental Technology (Taylor & Francis); Evaluation & the Health Professions (SAGE); Hydrometallurgy (Elsevier); Industrial & Engineering Chemistry Research (American Chemical Society); International Journal of Chemical Kinetics(Wiley);International Journal of Chemical Reactor Engineering (Degruyter); Journal of Advanced Oxidation Technologies (Science & Technology Network); Journal of the Australian Ceramic Society (Springer); Journal of Colloid and Interface Science (Elsevier); Journal of Environmental Chemical Engineering (Elsevier); Journal of Environmental Management (Elsevier); Journal of Hazardous Materials (Elsevier); Journal of Materials Chemistry A (Royal Society of Chemistry); Journal of Nanoscience and Nanotechnology (American Scientific Publishers); Journal of Photochemistry and Photobiology A: Chemistry (Elsevier); Journal of Physical Chemistry (American Chemical Society); Langmuir (American Chemical Society); Physical Chemistry Chemical Physics (Royal Society of Chemistry); Photochemical & Photobiological Sciences (Royal Society of Chemistry); RSC Advances (Royal Society of Chemistry); Science of the Total Environment (Elsevier); Separation and Purification Technology(Elsevier); Water, Air, & Soil Pollution (Springer); Water and Environment Journal(Wiley); Water Research (Elsevier); Water Science and Technology (Taylor & Francis) 相关热点