苏应龙
近期热点
资料介绍
个人简历
教育经历 2011.09-2016.09 同济大学 环境工程 博士2007.09-2011.07 天津大学 环境工程 学士工作经历 2020.01至今 华东师范大学 研究员2016.11-2019.11 华东师范大学 博士后科研项目 [1] 国家自然科学基金青年项目,41807462,主持,2019-2021。[2] 上海市青年科技英才扬帆计划,18YF1406900,主持,2018-2021。[3] 中国博士后科学基金面上资助,2017M611504,主持,2017-2019。[4] 中国博士后科学基金特别资助,2019T120321,主持,2019-2020。[5] 国家重点研发计划,2018YFC1901000,参与,2018-2022。荣誉及奖励 上海市科技进步三等奖(排名第四) 2017年简浩然环境工程奖(排名第三) 2017年高廷耀基金会青年博士生杰出人才奖学金 2016年研究领域
环境中新兴污染物环境行为、效应及其控制有机固废资源化处理""近期论文
[20] Luo JY; Huang WX; Zhang Q; Guo W; Wu Y; Feng Q; Fang F; Cao JS; Su YL*. Effects of different hypochlorite types on the waste activated sludge fermentation from the perspectives of volatile fatty acids production, microbial community and activity, and characteristics of fermented sludge. Bioresource Technology, 2020, 307, 123227.[19] Su YL; Zhang ZJ, Wu D, Zhan L, Shi HH, Xie B*. Occurrence of microplastics in landfill systems and their fate with landfill age. Water Research 2019, 164, 114968.[18] Su YL, Wu D, Xia HP, Zhang CY, Shi JH, Wilkinson KJ, Xie B*. Metallic nanoparticles induced antibiotic resistance genes attenuation of leachate culturable microbiota: The combined roles of growth inhibition, ion dissolution and oxidative stress. Environment International 2019, 128, 407-416.[17] Wu D#, Su YL#, Xi H, Chen XY, Xie B*. Urban and agriculturally influenced water contribute differently to the spread of antibiotic resistance genes in a mega-city river network. Water Research 2019, 158, 11-21.[16] Su YL, Wang JX, Xia HP, Xie B*, Li X. Anaerobic/aerobic conditions determine antibiotic resistance genes removal patterns from leachate by affecting bacteria taxa-genes co-occurrence modules. Chemosphere, 2019, 223, 28-38.[15] Su YL, Wang JX, Xia HP, Xie B*. Comparative network analysis revealing the mechanisms of antibiotic resistance genes removal by leachate recirculation under different hydraulic loadings. Science of The Total Environment, 2019, 649, 318-326.[14] Shi JH, Su YL, Zhang ZJ, Wei HW, Xie B*. How do zinc oxide and zero valent iron nanoparticles impact the occurrence of antibiotic resistance genes in landfill leachate? Environmental Science: Nano, 2019, 6, 2141-2151.[13] Zheng X#, Su YL#, Chen YG*, Huang HN, Shen QT. Global transcriptional responses of denitrifying bacteria to functionalized single-walled carbon nanotubes revealed by weighted gene-coexpression network analysis. Science of The Total Environment, 2018, 613–614, 1240-1249.[12] Hassan M, Wei HW, Qiu HJ, Su YL, Jaafry SWH, Zhan L, Xie B*. Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes. Bioresource Technology, 2018, 247, 434-442.[11] Su YL, Wang JX, Huang ZT, Xie B*. On-site removal of antibiotics and antibiotic resistance genes from leachate by aged refuse bioreactor: Effects of microbial community and operational parameters. Chemosphere, 2017, 178, 486-495.[10] Su YL, Chen YG*, Zheng X, Wan R, Huang HN, Li M, Wu LJ. Using sludge fermentation liquid to reduce the inhibitory effect of copper oxide nanoparticles on municipal wastewater biological nutrient removal. Water Research 2016, 99, 216-224.[9] Zheng X, Su YL, Chen YG*, Wan R, Li M, Huang HN, Li X. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle. Scientific Reports 2016, 6, 27748.[8] Su YL, Zheng X, Chen AH,Chen YG*, He GY, Chen HQ. Hydroxyl functionalization of single-walled carbon nanotubes causes inhibition to the bacterial denitrification process. Chemical Engineering Journal 2015, 279, 47-55.[7] Su YL, Zheng X, Chen YG*, Li M, Liu K. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports 2015, 5, 15824.[6] Zheng X, Su YL, Chen YG*, Wan R, Liu K, Li M, Yin DQ. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environmental Science & Technology, 2014, 48 (23): 13800-13807.[5] Zheng X, Su YL, Li X, Xiao ND, Wang DB,Chen YG*. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production. Environmental Science & Technology, 2013, 47 (9): 4262-4268.[4] Zheng X, Su YL, Chen YG*. Acute and chronic responses of activated sludge viability and performance to silica nanoparticles. Environmental Science & Technology, 2012, 46, (13): 7182-7188.[3] Zheng X, Su YL, Chen YG*, Wan R, Li M, Wei YY, Huang HN. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity. Scientific Reports, 2014, 4, 05653.[2] Zheng X, Su YL, Chen YG*, Wei YY, Li M, Huang HN. The effects of carbon nanotubes on nitrogen and phosphorus removal from real wastewater in the activated sludge system. RSC Advances, 2014, 4, (86): 45953-45959.[1] Chen YG, Su YL, Zheng X*, Chen H, Yang H. Alumina nanoparticles-induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Research, 2012, 46, (14): 4379-4386. 相关热点