何福坡
近期热点
资料介绍
个人简历
何福坡,博士(后),广东工业大学“青年百人计划”引进人才,广州市“珠江科技新星”入选者教育与工作经历2007,济南大学,获得学士学位2011-2012,日本产业技术综合研究所(AIST),联合培养博士研究生2013,华南理工大学,获得博士学位2015,广州医科大学,博士后流动站出站2015-至今,广东工业大学,机电工程学院,讲师,副教授(2016) 主持或参与的主要项目[1] 新型多孔碳酸钙基骨修复材料的制备及碳酸钙成骨机制的探索,国家自然科学基金青年基金项目,主持[2] 高强韧性可降解铁/β-磷酸三钙复合材料的创新制备及性能研究,广州市科技计划项目“珠江科技新星”人才专项,主持[3] 可降解铁-磷酸钙陶瓷复合材料的设计、制备和性能研究,广东工业大学“青年百人计划”科研启动经费,主持[4] 3D打印生物陶瓷义齿关键技术研发,佛山仙湖实验室开放基金重点项目,子课题1负责人[5] 挤出成型-微钻孔技术制备磷酸锂镁生物陶瓷支架及其生物学响应,华南理工大学广东省生物医学工程重点实验室开放课题,主持[6] 个性化珠宝首饰增材制造技术的研发与推广应用,广东省科技计划项目,参与[7] 难加工材料增材制造关键技术,季华实验室科研项目,参与 主要专利[1] 何福坡, 任伟玮, 唐梓敏, 潘东伟, 伍尚华, 邓欣, 王胜彬. 可降解生物活性陶瓷/金属复合材料及其制备方法和应用,专利号:ZL 2016 1 0273661.0[2] 何福坡, 叶建东,任伟玮,李继彦,黄淼俊,邓欣,伍尚华. 一种可降解生物活性复合陶瓷微球支架材料及其制备方法及应用,专利号:ZL 2016 1 0889782.8[3] 何福坡, 唐梓敏, 潘东伟, 王胜彬, 伍尚华. 一种三维打印生物陶瓷复合支架及其应用,申请号:201710347623.X[4] 何福坡, 田野, 伍尚华. 一种抗感染生物陶瓷人工骨及其应用,申请号:201710500117.X[5] 何福坡, 方锡波. 一种生物陶瓷支架及其应用,申请号:201910695701.4研究领域
陶瓷三维打印;生物制造;生物陶瓷;陶瓷刀具""近期论文
[1] Guowen Qian, Peirong Fan, Fupo He*, Jiandong Ye*. Novel strategy to accelerate bone regeneration of calcium phosphate cement by incorporating 3D plotted poly(lactic-co-glycolic acid) network and bioactive wollastonite. Advanced Healthcare Materials. 2019, 8: 1801325. (IF = 6.27; 一区Top期刊)[2] Fupo He*, Guowen Qian, Weiwei Ren, et al. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. Biofabrication. 2017, 9: 025005. (IF = 7.24; 一区Top期刊)[3] Fupo He*, Teliang Lu, Xibo Fang, et al. Effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate bioceramics for bone regeneration. Materials Science & Engineering C-Materials for Biological Applications. 2020, 112: 110892. (IF = 4.96; 二区)[4] Chao Qiu, Teliang Lu, Fupo He*, et al. Influences of gallium substitution on the phase stability, mechanical strength and cellular response of β-tricalcium phosphate bioceramics. Ceramics International. 2020, 46: 16364–16371. (IF = 3.45; 二区Top期刊)[5] Shenglei Feng, Fupo He*, Jiandong Ye*. Hierarchically porous structure, mechanical strength and cell biological behaviors of calcium phosphate composite scaffolds prepared by combination of extrusion and porogen burnout technique and enhanced by gelatin. Materials Science & Engineering C-Materials for Biological Applications. 2018, 82: 217–224. (IF = 4.96; 二区)[6] Teliang Lu, Shenglei Feng, Fupo He*, Jiandong Ye*. Enhanced osteogenesis of honeycomb β‐tricalcium phosphate scaffold by construction of interconnected pore structure: An in vivo study. Journal of Biomedical Materials Research Part A. 2020, 108A: 645–653. (IF=3.22; 二区)[7] Yanqiu Yang, Fupo He*, Jiandong Ye*. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass. Materials Science & Engineering C-Materials for Biological Applications. 2016, 69: 1004–1009. (IF = 4.96; 二区)[8] Fupo He, Fanwen Yang, Jixiang Zhu, et al. Fabrication of a novel calcium carbonate composite ceramic as bone substitute. Journal of the American Ceramic Society. 2015, 98: 223–228. (IF = 3.1, 三区Top期刊)[9] Fupo He, Jing Zhang, Fanwen Yang, et al. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials. Materials Science & Engineering C-Materials for Biological Applications. 2015, 50: 257–265. (IF = 4.96; 二区)[10] Fupo He, Yan Chen, Jiyan Li, et al. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure, Journal of Biomedical Materials Research Part A. 2015, 103: 1312–1324. (IF=3.22; 二区)[11] Fupo He*, Jing Zhang, Xiumei Tian, et al. A facile magnesium-containing calcium carbonate biomaterial as potential bone graft. Colloids and Surfaces B-Biointerfaces. 2015,136: 845–852. (IF=3.97; 二区)[12] Fupo He*, Weiwei Ren, Xiumei Tian, et al. Comparative study on in vivo response of porous calcium carbonate composite ceramic and biphasic calcium phosphate ceramic. Materials Science & Engineering C-Materials for Biological Applications. 2016, 64: 117–123. (IF = 4.96; 二区)[13] Fupo He*, Guowen Qian, Weiwei Ren, et al. Preparation and characterization of iron/β-tricalcium phosphate bio-cermets for load-bearing bone substitutes. Ceramics International. 2017, 43: 8348–8355. (IF = 3.45; 二区Top期刊)[14] Ye Tian, Teliang Lu, Fupo He*, et al. β-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities. Colloids and Surfaces B-Biointerfaces. 2018, 167: 318–327. (IF=3.97; 二区) [15] Fupo He*, Ye Tian, Xibo Fang, et al. Fabrication of β-tricalcium phosphate composite ceramic scaffolds based on spheres prepared by extrusion-spheronization. Journal of the American Ceramic Society. 2018, 101: 5811–5826. (IF = 3.1, 三区Top期刊)[16] Fupo He*, Teliang Lu, Ye Tian, et al. Tailoring the mechanical property and cell-biological response of β-tricalcium phosphate composite bioceramics by SrO-P2O5-Na2O based additive. Journal of the Mechanical Behavior of Biomedical Materials. 2018, 86: 215–223. (IF = 3.49, 二区)[17] Fupo He*, Teliang Lu, Xibo Fang, et al. Study on MgxSr3-x(PO4)2 bioceramics as potential bone grafts. Colloids and Surfaces B: Biointerfaces. 2019, 175: 158–165. (IF=3.97; 二区) [18] Fupo He*, Teliang Lu, Xibo Fang, et al. Modification of honeycomb bioceramic scaffolds for bone regeneration under the condition of excessive bone resorption. Journal of Biomedical Materials Research Part A. 2019, 107A: 1314–1323. (IF=3.22; 二区) 相关热点