邵志强
近期热点
资料介绍
个人简历
个人简介 邵志强, 男, 1963年11月生, 研究生学历, 硕士学位, 教授, 硕士生导师。1981年6月毕业于浙江师范学院金华分校(现浙江师范大学)数学专业, 1991年7月毕业于上海复旦大学数学研究所, 获硕士学位。1991年7月至今在福州大学从事教学和科学研究工作, 科研上主要从事非线性偏微分方程理论与应用的研究,已经分别在《Journal of Differential Equations》、《Nonlinear Analysis: Real World Applications》、《Nonlinear Analysis:Theory, Methods & Applications》、《Z. Angew. Math. Phys.》、《Math. Models Methods Appl. Sci.》、《Mathematical Methods in the Applied Sciences》、《J. Math. Anal. Appl.》、《[英国] IMA J. Appl. Math.》、《Journal of Mathematical Physics》,《Communications on Pure and Applied Analysis》、《Journal of Elasticity》、《[德国]Math. Nachr. 》、《Acta Mathematica Scientia》、 《Journal of Applied Analysis and Computation》、中国科学院《数学物理学报》等国际权威刊物和国内核心刊物上发表学术论文60余篇,其中SCI收录42篇, EI收录20篇。科研项目:(1)2009-2011, 半导体器件电子流动的数学分析与非线性偏微分方程, 福建省自然科学基金(主持).(2)2007-2009, 半导体器件电子流动的数学分析, 福建省教育厅科技项目(主持).(3)2004-2007, 非线性偏微分方程奇性解的存在性等若干问题的研究, 福州大学科技发展基金(主持).(4)2000-2002, 应用偏微分方程, 福建省教育厅科技项目(主持).主讲课程 数学分析、高等数学、应用偏微分方程、数学物理方法研究领域
非线性偏微分方程理论与应用""近期论文
(1)Concentration of mass in the pressureless limit of the Euler equations of one-dimensional compressible fluid flow, Nonlinear Analysis: Real World Applications 52, 103039 (2020). (SCI二区,EI)(2) The vanishing adiabatic exponent limits of Riemann solutions to the isentropic Euler equations for power law with a Coulomb-likefriction term, Journal of Mathematical Physics 60, 101504 (2019). (SCI 4区)(3) The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation, Z. Angew. Math. Phys. (2018) 69: 44. (SCI二区、EI)(4)Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation lawswith small BV data: Rarefaction waves, Nonlinear Analysis: Real World Applications 44 (2018) 497-536. (SCI二区、EI)(5)The Riemann problem with delta initial data for the nonsymmetric Keyfitz-Kranzer system with Chaplygin pressure, Journal ofApplied Analysis and Computation 7(2017) 680-701. (SCI 3区)(6) Interactions of delta shock waves for the Aw-Rascle traffic model with split delta functions, Journal of Applied Analysis and Computation7(2017) 119-133. (SCI 3区)(7) The Riemann problem with delta initial data for the isentropic relativistic Chaplygin Euler equatios, Z. Angew. Math. Phys. (2016) 67: 66. (SCI二区、EI)(8) Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas, Communication on Pure and Applied Analysis 15 (2016) 2373-2400. (SCI 3区)(9) Riemann problem for the relativistic generalized Chaplygin Euler equations, Communcation on Pure and Applied Analysis 15 (2016)127-138. (SCI 3区)(10) Riemann problem with delta initial data for the relativistic Chaplygin Euler equations, Journal of Applied Analysis and Computation6 (2016) 376-395. (SCI 4区)(11) Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation lawswith small BV data: shocks and contact discontinuities, Communcation on Pure and Applied Analysis 14 (2015) 759-792. (SCI 3区)(12) Lifespan of classical discontinuous solutions to general quasilinear hyperbolic systems of conservation laws with small BV initial data:Rarefaction waves, J. Math. Anal. Appl. 409 (2014) 1066-1083. (SCI二区)(13) Asymptotic behavior of global classical solutios Goursat problem for quaslinear hyperbolic systems with small BV data,Z. Angew. Math. Phys. 65 (2014) 241-278. (SCI二区、EI)(14) Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems with BV data, Mathematical Methods in the Applied Sciences 37 (2014) 1700-1716. (SCI 3区、EI)(15) Almost global existence of classical discontinuous solutions to genuinely nonlinear hyperbolic systems of conservation laws with small BVinitial data, Journal of Differential Equations 254 (2013) 2803-2833. (SCI一区)(16) Global existence of classical solutions of Goursat problem for quasilinear hyperbolic systems of diagonnal form with large BV data,Communication on Pure and Applied Analysis 12 (2013) 2739-2752. (SCI 3区)(17) Asymptotic behavior of global classical solutions to the mixed initial-boundary value problem for diagonalizable quasilinear hyperbolic systems, IMA Journal of Applied Mathematics 78 (2013) 1-31. (SCI二区、EI)(18) Global structure instability of Riemann solutions for general quasilinear hyperbolic systems of conservation laws under small BVperturbations of the initial data: shocks and contact discontinuities, IMA Journal of Applied Mathematics 78 (2013) 1318-1355. (SCI二区、EI)(19) Lifespan of classical discontinuous solutions to general quasilinear hyperbolic systems of conservation laws with smallBV initial data; shock and contact discontinuities, J. Math. Anal. Appl. 387 (2012) 698-720. (SCI二区)(20) The generalized nonlinear initial-boundaey Riemann problem for linearly degenerate quasilinear hyperbolic systems ofconservation laws, J. Math. Anal. Appl. 379 (2011) 589-615. (SCI二区)(21) A note on the asymptotic behavior of global classical solutions of diagonalizable quasilinear hyperbolic systems, Nonlinear Analysis: Theory, Methods & Applications 73 (2010) 600-613. (SCI二区、 EI)(22) Global structure stability of Riemann solutions for linearly degenerate hyperbolic conservation laws under small BV perturbations of the initial data, Nonlinear Analysis: Real World Applications 11 (2010) 3791-3808, doi:10.1016/j.nonrwa.2010.02.009. (SCI一区、 EI)(23) Asymptotic behavior of global classical solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems with small BV Data, Journal of Elasticity 98 (2010) 25-64. (SCI 3区、 EI)(24) Global weakly discontinuous solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Mathematical Models and Methods in Applied Sciences 19 (2009) 1099-1138. (SCI一区、 EI)(25) The mixed initial-boundary value problem for quasilinear hyperbolic systems with linearly degenerate characteristics, Nonlinear Analysis: Theory, Methods & Applications 71 (2009) 1350-1368. (SCI二区、 EI)(26) Global existence of classical solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems of diagonal form with large BV data, Journal of Mathematical Analysis and Applications 360 (2009) 398-411. (SCI二区)(27) Global weakly discontinuous solutions to quasilinear hyperbolic systems of conservation laws with damping with a kind of non-smoothinitial data, Z. Angew. Math. Phys. 59 (2008) 935-968. (SCI二区、EI)(28) Global structure stability of Riemann solutions for general hyperbolic systems of conservation laws in the presence of a boundary, Nonlinear Analysis: Theory, Methods & Applications 69 (2008) 2651-2676. (SCI二区、 EI)(29) Blow-up of solutions to the initial–boundary value problem for quasilinear hyperbolic systems of conservation laws, Nonlinear Analysis: Theory, Methods & Applications 68 (2008) 716-740. ( SCI二区、 EI)(30) Global weakly discontinuous solutions for hyperbolic conservation laws in the presence of a boundary, Journal of Mathematical Analysis and Applications 345 (2008) 223-242. (SCI二区)(31) Shock reflection for a system of hyperbolic balance laws, Journal of Mathematical Analysis and Applications 343 (2008) 1131-1153. (SCI二区)(32) Global solutions with shock waves to the generalized Riemann problem for a class of quasilinear hyperbolic systems of balance laws II, Mathematische Nachrichten 281(2008) 879–902. (SCI 3区)(33) Corrigendum to \标签: 福州大学 数学与计算机科学学院
相关热点