陈和柏
近期热点
资料介绍
个人简历
个人简介陈和柏博士,副教授,福州大学旗山学者。现从事微分方程与动力系统的教学和研究。于2010年6月与2013年6月分别获得四川大学数学基地班专业学士学位与基础数学硕士学位;于2017年6月获得西南交通大学一般力学与力学基础专业博士学位。在科研上,应邀赴英国帝国理工学院和诺丁汉大学等国内外大学进行学术访问。主要从事关于光滑及非光滑微分方程的定性理论与分岔理论的研究。博士学位论文获得了西南交通大学优秀博士学位论文培育项目资助,并被评为西南交通大学优秀博士学位论文。近年来,在美国《J. Differential Equations》、《Physica D》、《J. Math. Anal. Appl.》和英国《Nonlinearity》《J. Phys. A: Math. Theo.》等国际重要学术期刊上发表一作SCI学术论文二十多篇。科研项目关于Lienard系统的全局分岔与Hilbert第16问题,国家自然科学青年基金,项目金额:26万,项目编号:11801079,2019.01-2021.12.光滑及非光滑系统的全局研究,校人才基金,项目金额:25万,项目编号:XRC-17038,2017.01-2020.12.研究领域
微分方程与动力系统""近期论文
部分发表SCI收录论文[1] H. Chen, X. Chen, Dynamical analysis of a cubic Lienard system with global parameters, Nonlinearity, 28 (2015): 3535-3562.[2] H. Chen, X. Chen, Dynamical analysis of a cubic Lienard system with global parameters: (II), Nonlinearity, 29 (2016): 1798–1826. [3] H. Chen, J. Xie, The number of limit cycles of the FitzHugh nerve system, Quart. Appl. Math., 73 (2015): 365-378. [4] H. Chen, X. Li, Global phase portraits of memristor oscillators, Internat. J. Bifur. Chaos 24 (2014): 1450152.[5] H. Chen, Global analysis on the discontinuous limit case of a smooth oscillator, Internat. J. Bifur. Chaos 26 (2016) 1650061.[6] H. Chen, Global bifurcation for a class of Filippov system with symmetry, Qual. Theory Dyn. Syst. 15 (2016): 349-365.[7] H. Chen, J. Xie, Harmonic and subharmonic solutions of the SD oscillator, Nonlinear Dyn. 84 (2016): 2477-2486.[8] H. Chen, L. Zou, Global study of Rayleigh-Duffing oscillators, Journal of Physics A: Mathematical and Theoretical 49 (2016): 165202.[9] D. Li, H. Chen, J. Xie, Statistical properties of the universal limit map of grazing bifurcations, Journal of Physics A: Mathematical and Theoretical 49 (2016): 355102.[10] H. Chen, Global dynamics of memristor oscillators, Internat. J. Bifur. Chaos 26 (2016) 1650198.[11] H. Chen, X. Chen, A proof of Wang–Kooij’s conjectures for a cubic Liénard system with a cusp, Journal of Mathematical Analysis and Applications,445 (2017): 884-897. [12] H. Chen, X. Chen, J. Xie, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry, Discrete and Continuous Dynamical Systems-Series B, 22 (2017): 1273-1293. [13] H. Chen, D. Li, J. Xie, Y. Yue, Limit cycles in planar continuous piecewise linear systems, Communications in Nonlinear Science and Numerical Simulation, 47 (2017): 438-454.[14] H. Chen, Z. Cao, D. Li, J. Xie, Global analysis on a discontinuous dynamical system, International Journal of Bifurcation and Chaos, 27 (2017): 1750078. [15] D. Li, H. Chen, J. Xie, J. Zhang, Sinai-Ruelle-Bowen measure for normal form map of grazing bifurcation of impact oscillators, Journal of Physics A: Mathematical and Theoretical, 50 (2017): 385103.[16] H. Chen, J. Llibre, Y. Tang, Global study of SD oscillator, Nonlinear Dynamics, 91(2018): 1755-1777.[17] H. Chen, X. Chen, Global phase portraits of a degenerate Bogdanov-Takens system with symmetry: (II), Discrete and Continuous Dynamical Systems-Series B, 23(2018): 4141-4170.[18] H. Chen, D. Huang, Y. Jian, The saddle case of Rayleigh-Duffing oscillators, Nonlinear Dynamics, 93(2018): 2283-2300.[19] H. Chen, S. Duan, Y. Tang, J. Xie, Global dynamics of a mechanical system with fry friction, Journal of Differential Equations, 265(2018): 5490-5519.[20] H. Chen, J. Duan, Bounded and unbounded solutions of a discontinuous oscillator at resonance, International Journal of Non-Linear Mechanics, 105(2018): 146-151.[21] H. Chen, L. Zou, How to control the immigration of infectious individuals for a region? Nonlinear Analysis Series B: Real World Applications, 45(2019): 491-505.[22] H. Chen, Y. Tang, At most two limit cycles in a piecewise linear differential system with three zones and asymmetry, Physica D, to appear.[23] H. Chen, M. Han, Y. Xia, Limit cycles of a Lienard system with symmetry allowing for discontinuity, Journal of Mathematical Analysis and Applications, 468 (2018): 799-816.标签: 福州大学 数学与计算机科学学院
相关热点