曹婉容
近期热点
资料介绍
个人简历
曹婉容,教授,博士生导师. 2004年在哈尔滨工业大学获得理学博士学位后,加入东南大学数学系。2008年晋升为副教授、硕士生导师。2010年9月至2011年8月获国家留学基金委资助访问布朗大学应用数学系,并分别于2012年5月到8月、2013年6月到8月、2014年6月到8月、2015年6月到7月作为访问副教授在布朗大学应用数学系进行学术研究与交流合作。累积发表学术论文三十余篇,其中被SCI收录二十余篇。主讲《金融模型及计算》、双语《数值分析》、《数值代数》、《计算方法》,以及工科研究生《数值分析》等课程,参编教学参考书《数值分析全真试题解析》(2009-2014).目前在研国家自然科学基金项目两项, 其中主持一项、参与一项。欢迎对上述研究方向感兴趣的同学报考我的硕士研究生、博士研究生,也欢迎已取得博士学位的青年学者加入我们的课题组做博士后。 科研项目: 1. 主持国家自然科学基金面上项目,11671083、求解刚性及非线性随机延迟微分方程的数值方法、2017/01-2020/12;2. 参与国家自然科学基金面上项目,11271068、空间分数阶偏微分方程高精度快速算法的研究、2013/01-2016/12 (排名第二);3. 主持国家自然科学基金青年基金项目,10901036、求解随机延迟微分方程的多步方法、2010/01-2012/12;4. 参与国家自然科学基金面上项目,10771033、椭圆型方程反问题及数值解、2008/01-2010/12 (排名第四). 教改项目: 1. 工科研究生《数值分析》教学改革与实践 (No. JGLX18_080), 省级,20182. 数值分析双语教学与实践 (三类课程), 校级, 2014;3. 高等数值分析教学改革与实践, 校级, 2013. 荣誉:1. 2018年获中泰国立奖教金二等奖;2. 2014年获东南大学教学奖励金二等奖;3. 2009年获新城科技园教学奖励金;4. 2007年获黑龙江省科学技术二等奖. 研究生指导: 硕士生在读2名:陈丽媛、朱美瑾博士生在读2名:李胜悦、刘玉芬 毕业7名: 梁 佳 北京市IT行业 机器学习/算法工程师赵景宝 金陵中学仙林分校教师李学艳 江苏省无锡市中学教师佟振光 南京市IT行业 软件开发洪会粉 东南大学数学系博士生在读李秀萍 首都经贸大学经济管理专业博士生在读郝朝鹏 东南大学数学系博士生毕业、目前美国伍斯特理工学院博士在读 出版的教材或教辅用书:曹婉容,杜睿,吴宏伟,孙志忠,数值分析全真试题解析,东南大学出版社,2017研究领域
研究方向为微分方程数值解. 目前的研究兴趣为随机微分方程、分数阶微分方程及延迟微分方程的高效数值方法,包括数值方法的建立、收敛性与稳定性分析、刚性及非线性问题的数值算法,以及生物、控制、金融等领域中相关应用问题的数值模拟与大规模计算等.""近期论文
29.李学艳,曹婉容*, 分数阶布朗运动驱动的随机延迟微分方程数值解,高等学校计算数学学报,39 (4) (2017), 289-315. 28. Zhaopeng Hao, Wanrong Cao*,An improved algorithm based on finite difference schemes for fractional boundary value problems with nonsmooth solution, Journal of Scientific Computing, 73 (1) 2017, 395-415. 27. Zhaopeng Hao, Wanrong Cao*, Guang Lin, A second-order difference scheme for the time fractional substantial diffusion equation, Journal of Computational and Applied Mathematics, 313 (2017), 54-69. 26. Wanrong Cao*, Fanhai Zeng, Zhongqiang zhang, George Em Karniadakis, Implicit-Explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput., 38 (5) (2016), A3070-A3093. 25. Zhaopeng Hao, Kai Fan, Wanrong Cao*, Zhizhong Sun, A finite difference scheme for semilinear space-fractional diffusion equations with time delay, Applied Mathematics and Computation,275 (2016), 238-254. 24. Xiuping Li, Wanrong Cao*, On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations, Applied Mathematics and Computation, 261 (2015), 373-381. 23. Wanrong Cao*, Zhongqiang zhang, George Em Karniadakis, Time-splitting schemes for fractional differential equations I: Smooth solutions, SIAM J. Sci. Comput., 37 (2015), pp. A1752–A1776, doi: 10.1137/140996495. 22. Wanrong Cao, Zhongqiang zhang, George Em Karniadakis*, Numerical methods for stochastic delay differential equations via the Wong-Zakai approximation, SIAM J. Sci. Comput., 37 (2015), A295-A318. 21. Zhaopeng Hao, Zhizhong Sun*, Wanrong Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys., 281 (2015), 787–805. 20. Zhaopeng Hao, Zhizhong Sun, Wanrong Cao, A three-level linearized compact difference scheme for the Ginzburg-Landau equation, Numerical Methods for Partial Differential Equations, 31(3) (2015), 876-899. 19. Wanrong Cao*, Peng Hao, Zhongqiang Zhang, Split-step theta-method for stochastic delay differential equations, Appl. Num. Math., 76 (2014), 19-33. 18. Mohsen Zayernouri,Wanrong Cao, Zhongqiang zhang, George Em Karniadakis*, Spectral and discontinuous spectral element methods for fractional delay equations, SIAM J. Sci. Comput., 36 (2014), B904-B929. 17. Wanrong Cao*, Zhongqiang Zhang, On exponential mean-square stability of two-step Maruyama methods for stochastic delay differential equations, J. Comput. Appl. Math., 245 (2013), 182-193. 16. Wanrong Cao*, Zhongqiang Zhang, Simulations of two-step Maruyama methods for nonlinear stochastic delay differential equations, Adv. Appl. Math. Mech., 4 (2012), 821-832. 15. Wanrong Cao*, Zhizhong Sun.Maximum norm error estimates of Crank- Nicolson scheme for solving a linear moving boundary problem, J. Comput. Appl. Math., 234 (2010), 2578-2586. 14. Wanrong Cao*, T-stability of the semi-implicit Euler method for delay differential equations with multiplicative noise, Applied Mathematics and Computation, 216 (2010), 999-1006. 13. Ri Du*, Wanrong Cao, Zhizhong Sun, A compact difference scheme for the fractional diffusion- wave equation, Applied Mathematical Modelling, 34 (2010), 2998-3007. 12. 郝朝鹏,曹婉容*,求解随机延迟微分方程的分步向前Euler方法,黑龙江大学自然科学学报,30 (2013), 1-7. 11. Wanrong Cao. T-stability of the semi-implicit Euler method for delay differential equations with multiplicative noise, Appl. Maths. Comput., 216 (2010), 999-1006. 10. Wanrong Cao, Zhizhong Sun. Maximum norm error estimates of Crank-Nicolson scheme for solving a linear moving boundary problem, J. Comput. Appl. Maths., 234 (2010), 2578-2586. 9. Zhencheng Fan, Mingzhu Liu*, Wanrong Cao. Existence and uniqueness of the solutions and convergence of semi-implicit Euler methods for stochastic pantograph equations, J. Math. Anal. Appl., 325 (2007), 1142-1159. 8. Wanrong Cao*. Local convergence of semi-implicit Euler method for a linear stochastic differential delay equation, Journal of natural science of Heilongjiang University, 24 (1) (2007), 97-99,104. (in Chinese) 7. Wanrong Cao*,Jingjun Zhao, Mingzhu Liu. NGPG-stability of implicit Runge-Kutta method for neutral differential equations with pantograph delay, Journal of system simulation, 19 (2007), 2698-2700, 2705. (in Chinese) 6. Wanrong Cao,Mingzhu Liu*. Stability of semi-implicit Milstein method for stochastic differential delay equations, Journal of Harbin Institute of Technology, 37 (4) (2005), 446-448. (in Chinese) 5. Wanrong Cao,Mingzhu Liu*. T-Stability of Euler-Maruyama method for stochastic differential delay equations, Journal of Harbin Institute of Technology, 37 (3) (2005), 303-305, 309. (in Chinese) 4. Wanrong Cao, Mingzhu Liu*, Zhencheng Fan. MS-stability of the Euler-Maruyama method for stochastic differential delay equations, Appl. Maths. Comput., 159 (2004), 127-136. 3. Mingzhu Liu*, Wanrong Cao, Zhencheng Fan. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation, J. Comput. Appl. Maths., 170 (2004), 255-268. 2. Jingjiu Zhao*, Wanrong Cao, Mingzhu Liu. Asymptotic stability of Runge-Kutta methods for the pantograph equations, J. Comput. Maths., 22 (2004), 523-534. 1. Wanrong Cao,Jingjun Zhao*, Mingzhu Liu. Stability of new block θ-method for neutral differential equation with pantograph delay, Journal of system simulation, 15 (6) (2003), 807-809, 822. (in Chinese)1. 本人为以下国际学术期刊的长期审稿人: Journal of Computational and Applied MathematicsJournal of Computational PhysicsApplied Mathematics and ComputationApplied Mathematics LettersApplied Mathematical ModellingApplied Numerical MathematicsComputers and Mathematics with ApplicationsNonlinear Analysis: Hybrid SystemsInternational Journal of Computer Mathematics 2. 本人为中国仿真学会仿真算法专业委员会委员;江苏省工业与应用数学学会秘书长. 相关热点
最新收录
- 平野真衣(Hirano-Mai) 05-22
- 上田纱奈(上田紗奈 Ueda- 05-22
- 七瀬侑良(七濑侑良,Nan 05-22
- Sien小慧君 05-22
- 罗杰叔叔(Uncle Roger) 05-22
- 悉尼妹(Sydney Sweeney) 05-22
- 玩具砖家 05-19
- 行走的大大大羊腿 05-19
- 梦飞大大 05-19
- 晏安anan 05-19