热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
赵珺
2023-05-09 17:01
  • 赵珺
  • 赵珺 - 教授 博导 硕导-大连理工大学-控制科学与工程学院-个人资料

近期热点

资料介绍

个人简历


获2019年教育部青年科学奖
获“国家百千万人才工程”
国家重点研发计划“变革性技术关键科学问题”专项项目负责人(首席),工业园区多能流综合管控与协同优化。合作单位:清华大学、浙江大学、中科院沈阳自动化所、东北大学、东南大学等。
国家优秀青年基金获得者。
获中国自动化学会科技进步一等奖(第一)。
获中国自动化学会过程控制青年科技奖。
大连理工大学“智能系统研究与应用”创新团队负责人。
2008年在大连理工大学控制理论与控制工程专业获工学博士学位。
2013.4-2013.10 加拿大 University of Alberta 国家公派访问学者。
作为项目负责人主持国家重点研发计划项目,国家自然科学基金重点项目、优秀青年基金,面上项目等,国家863计划子课题,国家科技支撑计划子课题,企业横向课题多项;已完成多个国家863目标导向类和探索导向类纵向课题,以及国际合作、企业横向课题的研究工作。
发表学术论文100余篇,其中SCI收录40余篇。

教育经历
Education Background
2003.92008.11大连理工大学控制理论与控制工程博士
工作经历
Work Experience
2015.12至今大连理工大学教授
2014.12015.11大连理工大学副教授
2008.122013.12大连理工大学讲师
著作成果
Data-Driven Prediction for Industrial Processes and Their Applications
专利
一种基于生产计划的钢铁企业氧气负荷预测方法
一种光伏出力短期区间预测方法
一种风电出力短期区间预测方法
一种基于复杂网络社区发现的工业数据样本筛选方法
大时滞化工生产过程的预测输出两自由度控制方法
一种基于分段形态表示的工业序列数据缺失的填补方法
一种基于数学规划的冶金企业氧氮能源优化调度方法
一种基于多目标密度聚类的高炉煤气系统模型隶属度函数确定方法
一种基于粒度计算的冶金企业转炉煤气柜位长期预测方法
基于炼钢节奏估计的冶金企业转炉煤气发生量长期预测方法
钢铁企业焦炉煤气柜位预测平衡方法
一种基于统计分类的冶金煤气系统实时平衡调整方法
一种基于数据的冶金企业高炉煤气动态预测方法
一种基于知识的冶金企业转炉煤气调度方法
一种基于数据的冶金企业高炉煤气动态预测方法
一种基于分段形态表示的工业序列数据缺失的填补方法
科研项目
多能流统一建模与多尺度态势估计, 国家重点研发计划, 2018/05/18, 进行
工业园区多能流综合管控与协同优化, 国家重点研发计划, 2018/05/18, 进行
2016年大连科技之星项目(2015年称号)-钢铁工序间匹配优化与节能关键技术及示范应用, 大连市青年科技之星项目, 2016/10/11, 进行
智能制造知识库更新和模糊匹配技术研究, 国家科技支撑计划项目, 2014/10/01, 完成
全日制工程硕士多阶段校企交叉式培养的探索与实践, 2015/11/10-2016/11/02, 进行
基于大数据与知识融合的钢铁制造/能源协同建模与优化, 国家自然科学基金, 2015/08/18, 完成
流程工业能源系统基于数据的预测与优化调度, 国家自然科学基金, 2015/08/18, 完成
中厚板生产线生产计划与调度算法, 纵向合同, 2005/05/06, 完成
铁钢实时对应调度工具研发及应用, 863 计划项目, 2013/07/31, 完成
基于工业大数据的能源系统/制造过程协同调度方法及其应用, 国家自然科学基金, 2014/09/01, 完成
东北特钢大连环保搬迁项目能源预测系统, 2010/12/01-2011/12/30, 进行
钢铁能源数学模型的开发及应用, 2011/07/01-2012/12/30, 进行
冷轧薄板厂工序消耗控制方法研究, 2012/06/05-2012/12/31, 进行
选矿专家系统平台及应用软件研发, 2012/12/14-2013/12/31, 进行
制氧系统预测与平衡调度, 2013/04/23-2014/12/31, 进行
基于数据的冶金副产煤气多尺度综合预测及优化调整方法研究, 国家自然科学基金, 2011/09/25-2014/12/31, 完成
蒸汽-海水淡化能源供需平衡调度模型研究项目, 2018/09/21-2020/08/31, 进行
学术荣誉
2016当选:青年学者
2016当选:优秀青年基金获得者
科研奖励
2013年大连理工大学优秀教学成果奖(研究生类)
中国自动化学会科技奖
其他奖励
国家百千万人才工程 (2019年)
教育部青年科学奖 (2019年)
2017中国过程控制青年科技奖 (2017年)
入选大连理工大学“星海杰青”资助计划 (2017年)
大连理工大学优秀共产党员 (2016年)
入选大连理工大学“星海优青”资助计划 (2014年)
2011-2012电信学部优秀青年教师 (2012年)

研究领域


1)工业人工智能
2)工业能源系统优化
3)能源云平台综合管控
4)大数据分析与机器学习
5)复杂工业系统建模""

近期论文


[1]Han, Zhongyang,Zhao, Jun,Wang, Wei.An Optimized Oxygen System Scheduling With Electricity Cost Consideration in Steel Industry[J],IEEE-CAA JOURNAL OF AUTOMATICA SINICA,2017,4(2):216-222
[2]吕志明,王霖青,赵珺,刘颖.一种基于自适应代理模型的并行贝叶斯优化方法[J],控制与决策,2018,34(5):1025-1031
[3]Lv, Zhiming,Wang, Linqing,Han, Zhongyang,Zhao, Jun,Wang, Wei.Surrogate-Assisted Particle Swarm Optimization Algorithm With Pareto Active Learning for Expensive Multi-Objective Optimization[J],IEEE-CAA JOURNAL OF AUTOMATICA SINICA,2019,6(3):838-849
[4]Zhao, Jun,Chen, Long,Pedrycz, Witold,Wang, Wei.Variational Inference-Based Automatic Relevance Determination Kernel for Embedded Feature Selection of Noisy Industrial Data[J],IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2019,66(1):416-428
[5]胡涛,鲍浩波,孟长功,赵珺,于永鲜,王慧龙,陶胜洋,刘淑芹.以在线开放课程为核心 进行一流课程的建设与实践[J],大学化学,2018,33(11):1-5
[6]Jin, Feng,Zhao, Jun,Han, Zhongyang,Wang, Wei.A joint scheduling method for multiple byproduct gases in steel industry[J],CONTROL ENGINEERING PRACTICE,2018,80:174-184
[7]Han, Zhongyang,Zhao, Jun,Leung, Henry,Wang, Wei.Construction of prediction intervals for gas flow systems in steel industry based on granular computing[J],CONTROL ENGINEERING PRACTICE,2018,78:79-88
[8]徐双双,赵珺,王伟.基于多目标差分进化算法的高炉煤气系统调度[J],化工进展,2018,37(7):2510-2515
[9]Lv, Zheng,Zhao, Jun,Zhai, Yanwei,Wang, Wei.Non-iterative T-S fuzzy modeling with random hidden-layer structure for BFG pipeline pressure prediction[J],CONTROL ENGINEERING PRACTICE,2018,76:96-103
[10]刘颖,刘若愚,赵珺,王伟.基于变分推理回声状态网络集成模型的工业数据区间预测[J],控制理论与应用,2018,35(8):1066-1073
[11]Jin, Feng,Zhao, Jun,Sheng, Chunyang,Wang, Wei.Causality Diagram-based Scheduling Approach for Blast Furnace Gas System[J],IEEE-CAA JOURNAL OF AUTOMATICA SINICA,2018,5(2):587-594
[12]赵珺,王伟,刘全利.A multiple surrogates based PSO algorithm[J],Artificial Intelligence Review,2018
[13]王春峰,吕政,赵珺,王伟.Heterogeneous Transfer Learning Based on Stack Sparse Auto-Encoders for Fault Diagnosis[A],2018 Chinese Automation Congress (CAC),2018
[14]翟延伟,吕政,赵珺,王伟.基于合作协同进化的多能流系统不确定多目标决策方法[A],2018中国过程控制会议,2018
[15]Wang, Tianyu,Han, Zhongyang,Zhao, Jun,Wang, Wei.Adaptive Granulation-Based Prediction for Energy System of Steel Industry[J],IEEE TRANSACTIONS ON CYBERNETICS,2018,48(1):127-138
[16]Wang, Tianyu,Zhao, Jun,Wang, Wei,Liu, Ying,Guo, Ge.Target-Oriented Granular Inference with Evolutionary Updating for Converter Gas Scheduling[A],2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC),2018,2610-2616
[17]Ge, Minghe,Wang, Linqing,Lv, Zheng,Zhao, Jun.A PH multiplier-based PSO method for metal balance in nonferrous metal industry[J],IFAC-PapersOnLine,2018,51(21):273-277
[18]Du, Jun,Dong, Shijian,Liu, Tao,Zhao, Jun.Multi-innovation based Identification of Output Error Model with Time Delay under Load Disturbance[J],IFAC-PapersOnLine,2018,51(21):224-228
[19]Jin, Feng,Lv, Zheng,Li, Maohua,Mou, Lei,Zhao, Jun,Wang, Wei.A Causal Model-Based Scheduling Approach for Coke Oven Gas System in Steel Industry[A],IFAC PAPERSONLINE,2018,51(21):7-12
[20]吕志明,王霖青,赵珺,王伟.一种基于多代理模型的混合整数规划优化方法[J],控制与决策,2017,34(2):362-368
[21]Zhao J.,Sheng C.,Wang W.,Pedrycz W.,Liu Q..Data-based predictive optimization for by product gas system in steel industry[A],13th IEEE Conference on Automation Science and Engineering, CASE 2017,2017,2017-August:87-
[22]刘洋,吕政,赵珺,刘颖,王伟.基于模糊分类的煤气系统调度调整点在线识别[A],第28届中国过程控制会议(CPCC 2017)暨纪念中国过程控制会议30周年,2017,1
[23]Lv Z.,Zhao J.,Liu Y.,Wang W.,Han M..A multi-objective clustering-based membership functions formation method for fuzzy modeling of gas pipeline pressure[J],IFAC-PapersOnLine,2017,50(1):12823-12828
[24]陈龙,刘全利,王霖青,赵珺,王伟.基于数据的流程工业生产过程指标预测方法综述[J],自动化学报,2017,43(6):944-954
[25]Jin, Feng,Wang, Linqing,Zhao, Jun,Wang, Wei,Liu, Ying,Li, Jian.A Dynamic Causal Diagram and Constraint-based Method for Scheduling in Blast Furnace Gas System of the Steel Industry[A],6th International Symposium on Advanced Control of Industrial Processes (AdCONIP),2017,119-124
[26]Wang, Tianyu,Wang, Linqing,Zhao, Jun,Wang, Wei,Liu, Ying.Evolutionary Adaptive Dynamic Programming Algorithm for Converter Gas Scheduling of Steel Industry[A],6th International Symposium on Advanced Control of Industrial Processes (AdCONIP),2017,137-142
[27]张乾乾,赵珺,盛春阳,王伟,刘颖.一种两阶段钢铁企业氧气系统平衡调整方法[J],控制工程,2017,24(4):716-721
[28]Sheng, Chunyang,Zhao, Jun,Wang, Wei.Map-reduce framework-based non-iterative granular echo state network for prediction intervals construction[J],NEUROCOMPUTING,2017,222:116-126
[29]吕政,赵珺,刘颖,王伟.基于模糊分类的煤气系统调度调整点在线识别[J],控制工程,2017,24(9)
[30]Zhang, Hongqi,Wang, Linqing,Zhao, Jun,Wang, Wei.Space Direction Neighborhood Preserving Embedding-based Monitoring and Scheduling Guidance for Blast Furnace Gas System[A],2017 6TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS (DDCLS),2017,467-472
[31]Lv, Zhiming,Zhao, Jun,Wang, Wei.Bayesian Optimization based on the data parallel approach[A],2017 CHINESE AUTOMATION CONGRESS (CAC),2017,1671-1675
[32]Lv, Zhiming,Zhao, Jun,Wang, Wei.A multi-objective particle swarm algorithm based on the active learning approach[A],IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY,2017,8716-8720
[33]王霖青,赵珺,王伟.Hyperpath-based vehicle routing and scheduling problem in time-varying networks for airport shuttle service[J],Natural Computing,2017,16(63):1-16
[34]吕政,赵珺,刘颖,王伟,韩敏.A multi-objective clustering-based membership functions formation method for fuzzy modeling of gas pipeline pressure[A],The 20th World Congress of the International Federation of Automatic Control,2017
[35]Song, Xiaohan,Zhao, Jun,Wang, Wei.Fast Generalized Reduced Gradient Algorithm Based Data Reconciliation Model[A],IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY,2017,8791-8795
[36]Lu, Chengcheng,Lv, Zheng,Wang, Linqing,Zhao, Jun,Wang, Wei.Fuzzy Model Based on Dynamic Weights of APs for Indoor Localization[A],PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017),2017,4323-4328
[37]Zhai, Yanwei,Lv, Zheng,Liu, Ying,Zhao, Jun,Wang, Wei.An Improved WM Fuzzy Modeling Method for Blast Furnace Gas System[A],PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017),2017,9737-9742
[38]Wang, Qiang,Wang, Linqing,Zhao, Jun,Wang, Wei.Long-Term Time Series Prediction Based on Deep Denoising Recurrent Temporal Restricted Boltzmann Machine Network[A],2017 CHINESE AUTOMATION CONGRESS (CAC),2017,2422-2427
[39]Zhao, Jun,Sheng, Chunyang,Wang, Wei,Pedrycz, Witold,Liu, Quanli.Data-based Predictive optimization for Byproduct Gas System in Steel Industry[A],2017 13TH IEEE CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE),2017,87-87
[40]Sheng, Chunyang,Zhao, Jun.Knowledge and mathematical programming-based optimal scheduling for byproduct gas system in steel industry[A],2017 CHINESE AUTOMATION CONGRESS (CAC),2017,7493-7498
[41]Song, Xiaohan,Lv, Zheng,Zhao, Jun,Wang, Wei,Wang, Linqing.Improved Dynamic Time Warping Algorithm with Adaptive Scaling for Steel Plate Thickness Matching[A],2017 11TH ASIAN CONTROL CONFERENCE (ASCC),2017,1401-1405
[42]Sun, Jian,Lv, Zheng,Zhao, Jun,Wang, Wei,Wang, Linqing,Guo, Ge.Joint distribution adaptation-based transfer learning for status classification of blast furnace gas pipeline network[A],2017 11TH ASIAN CONTROL CONFERENCE (ASCC),2017,2007-2012
[43]金锋,赵珺,盛春阳,王伟,刘颖.基于输入延迟支持向量机的氮气管网压力预测[J],信息与控制,2016,45(6):753-758
[44]Lv, Zheng,Zhao, Jun,Liu, Ying,Wang, Wei.Data imputation for gas flow data in steel industry based on non-equal-length granules correlation coefficient[J],INFORMATION SCIENCES,2016,367:311-323
[45]Chen, Long,Liu, Ying,Zhao, Jun,Wang, Wei,Liu, Quanli.Prediction intervals for industrial data with incomplete input using kernel-based dynamic Bayesian networks[J],ARTIFICIAL INTELLIGENCE REVIEW,2016,46(3):307-326
[46]Han, Zhongyang,Zhao, Jun,Wang, Wei,Liu, Ying.A two-stage method for predicting and scheduling energy in an oxygen/nitrogen system of the steel industry[J],CONTROL ENGINEERING PRACTICE,2016,52:35-45
[47]刘颖,张平,赵珺,吕政,王伟.基于尺度不变特征变换的浮选泡沫图像动态特性提取方法[J],控制理论与应用,2016,33(6):718-726
[48]Zhang, Wenlin,Lin, Qiang,Zhao, Jun,Wang, Wei.Soft Computing for Blast Furnace Gas System Pressure Based On an Improved Fuzzy Model[A],12th World Congress on Intelligent Control and Automation (WCICA),2016,2016-September:2400-2406
[49]陈龙,刘颖,赵珺,王伟.基于不完整输入动态贝叶斯网的高炉消耗煤气量区间预测[A],第28届中国控制与决策会议,2016,6
[50]Han, Zhongyang,Zhao, Jun,Liu, Quanli,Wang, Wei.Granular-computing based hybrid collaborative fuzzy clustering for long-term prediction of multiple gas holders levels[J],INFORMATION SCIENCES,2016,330(,SI):175-185
[51]Zhao, Jun,Han, Zhongyang,Pedrycz, Witold,Wang, Wei.Granular Model of Long-Term Prediction for Energy System in Steel Industry[J],IEEE TRANSACTIONS ON CYBERNETICS,2016,46(2,SI):388-400
[52]赵珺,王伟.Granular Computing-based Multi-output Long-term Prediction Intervals for Converter Gas Tank Levels[A],2016
[53]刘颖,赵珺,王伟.Prediction intervals for blast furnace consumption gas with incomplete input based on dynamic Bayesian networks,[A],2016
[54]赵珺,刘颖,王伟.Stacked Denoising Autoencoders Based Prediction on Gas Flow of A Blast Furnace[A],2016
[55]Lv, Zheng,Zhao, Jun,Liu, Ying,Wang, Wei.Use of a quantile regression based echo state network ensemble for construction of prediction Intervals of gas flow in a blast furnace[J],CONTROL ENGINEERING PRACTICE,2016,46:94-104
[56]赵珺,王伟,王霖青.Multi-Layer Encoding Genetic Algorithm-Based Granular Fuzzy Inference for[A],2016
[57]赵珺,崔庆磊,刘颖,王伟.基于多目标分层遗传模糊建模的磨矿过程溢流粒度软测量[J],控制与决策,2015,30(12):2187-2192
[58]刘国莉,叶同,王桂玲,赵珺.成品油调和配方优化研究[J],运筹与管理,2015,24(4):92-96
[59]张乾乾,赵珺,盛春阳,王伟,刘颖.一种两阶段钢铁企业氧气系统平衡调整方法[A],第26届中国过程控制会议(CPCC2015),2015,1
[60]金锋,赵珺,盛春阳,王伟,刘颖.基于输入延迟最小二乘支持向量机的氮气管网压力预测[A],第26届中国过程控制会议(CPCC2015),2015,1
[61]乔峥,刘颖,赵珺,王伟,郭戈.基于子集融合与规则简约的磨矿过程模糊建模[J],控制理论与应用,2015,32(6):770-777
[62]吕政,赵珺,刘颖,王伟.基于最大方差权信息系数的煤气数据填补[J],控制理论与应用,2015,32(5):646-654
[63]Du, Chengguo,Sheng, Chunyang,Zhao, Jun,Liu, Ying,Wang, Wei.A multi-output fuzzy model for converter gas holder level prediction in steel industry[A],5th International Conference on Information Science and Technology (ICIST),2015,604-609
[64]Lv, Zhiming,Lv, Zheng,Zhao, Jun,Liu, Ying,Wang, Wei.A simplified nonlinear modeling for a two-stage grinding process circuit[A],5th International Conference on Information Science and Technology (ICIST),2015,610-614
[65]Lv, Zheng,Liu, Ying,Zhao, Jun,Wang, Wei.Soft computing for overflow particle size in grinding process based on hybrid case based reasoning[J],APPLIED SOFT COMPUTING,2015,27(27):533-542
[66]孙志民,赵珺,王伟.基于高斯搜索的改进粒子群优化在磨矿预测控制中应用[J],大连理工大学学报,2015,55(1):89-96
[67]Lv, Zheng,Zhao, Jun,Wang, Wei,Liu, Ying,Wang, Linqing.Subset fusion based T-S fuzzy modeling for blast furnace gas system in steel industry[A],10th Asian Control Conference (ASCC),2015
[68]Wang, Linqing,Zhao, Jun,Wang, Wei,Zhan, Zili.Genetic algorithm for regionalization problem with adaptive equity constraint[A],10th Asian Control Conference (ASCC),2015
[69]Zhao, Jun,Wang, Wei,Sun, Kan,Liu, Ying.A Bayesian Networks Structure Learning and Reasoning-Based Byproduct Gas Scheduling in Steel Industry[J],IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING,2014,11(4):1149-1154
[70]Sheng, Chunyang,Zhao, Jun,Wang, Wei,Liu, Quanli.Echo state network based prediction intervals estimation for blast furnace gas pipeline pressure in steel industry[A],19th World Congress of the International-Federation-of-Automatic-Control (IFAC),2014,47(3):1041-1046
[71]Han, Zhongyang,Zhao, Jun,Wang, Wei,Liu, Ying,Liu, Quanli.Granular Computing Concept based long-term prediction of Gas Tank Levels in Steel Industry[A],19th World Congress of the International-Federation-of-Automatic-Control (IFAC),2014,47(3):6105-6110
[72]周帆,赵珺,王伟,刘颖.基于混合高斯模型的独立成分分析在过程监测中的应用[A],第25届中国过程控制会议,2014,8
[73]吕政,赵珺,刘颖,王伟.基于最大方差权信息系数的冶金煤气流量数据填补[A],第25届中国过程控制会议,2014,11
[74]冯仁光,赵珺,王伟,刘颖.基于改进的自适应权重FCM和形态学的浮选泡沫图像分割[A],第25届中国过程控制会议,2014,8
[75]Tang Xiaoyan,Zhao Jun,Sheng Chunyang,Wang Wei.Long term prediction for generation amount of Converter gas based on steelmaking production status estimation[A],IEEE International Conference on Fuzzy Systems,2014,1088-1095
[76]Lu X.,Zhao J.,Liu Y.,Wang W..A hybrid genetic algorithm for byproduct gas scheduling in steel plant[A],2014 11th World Congress on Intelligent Control and Automation, WCICA 2014,2014,2015-March(March):1805-1810
[77]Zhao J.,Wang W.,Liu Q.,Sheng C..Data-driven modeling by Gaussian membership based sample selection and its application in steel energy system[A],2014 11th World Congress on Intelligent Control and Automation, WCICA 2014,2014,2015-March(March):377-384
[78]Zhao, Jun,Liu, Kai,Wang, Wei,Liu, Ying.Adaptive fuzzy clustering based anomaly data detection in energy system of steel industry[J],INFORMATION SCIENCES,2014,259:335-345
[79]Zhao, Jun,Wang, Wei,Liu, Quanli,Sheng, Chunyang.Data-driven Modeling by Gaussian Membership Based Sample Selection and Its application in Steel Energy System[A],11th World Congress on Intelligent Control and Automation,2014,377-384
[80]Xiong, Lu,Zhao, Jun,Liu, Ying,Wang, Wei.A Hybrid Genetic Algorithm for Byproduct Gas Scheduling in Steel Plant[A],11th World Congress on Intelligent Control and Automation,2014,1805-1810
[81]Sheng, Chunyang,Zhao, Jun,Leung, Henry,Wang, Wei.Extended Kalman Filter based Echo State Network for Time Series Prediction using MapReduceFramework[A],IEEE 9th International Conference on Mobile Ad-hoc and Sensor Networks (MSN),2013,175-180
[82]赵珺,杜雅楠,盛春阳,王伟.基于核的冶金煤气流量在线区间预测[J],控制理论与应用,2013,30(10):1274-1280
[83]Zhao, Jun,Zhu, Xiaoliang,Wang, Wei,Liu, Ying.Extended Kalman filter-based Elman networks for industrial time series prediction with GPU acceleration[J],NEUROCOMPUTING,2013,118:215-224
[84]Lv Z.,Liu Y.,Zhao J.,Wang W..Bayesian neural networks based pipeline pressure prediction for steam system in steel industry[A],2013 5th International Conference on Modelling, Identification and Control, ICMIC 2013,2013,344-349
[85]Wang Li,Gao Xianwen,Wang Wei,Zhao Jun.Dynamic Scheduling Method Based on Multi-Agent for Cold Rolling Whole Line[A],32nd Chinese Control Conference (CCC),2013,8082-8087
[86]Sheng, Chunyang,Zhao, Jun,Wang, Wei,Leung, Henry.Prediction Intervals for a Noisy Nonlinear Time Series Based on a Bootstrapping Reservoir Computing Network Ensemble[J],IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2013,24(7):1036-1048
[87]Liu, Y.,Zhao, J.,Wang, W..A Gaussian Process Echo State Networks Model for Time Series Forecasting[A],Joint World Congress of the International-Fuzzy-Systems-Association (IFSA) / Annual Meeting of the North-American-Fuzzy-Information-Processing-Society (NAFIPS),2013,643-648
[88]刘全利,王伟,赵珺.发挥科研团队综合优势提高研究生培养质量——以控制科学与工程学科为例[J],学位与研究生教育,2013,1:27-30
[89]王利,高宪文,王伟,赵珺.基于Multi-Agent的冷轧生产全流程动态调度方法[A],the 32nd Chinese Control Conference(第三十二届中国控制会议),2013,8082-8087
[90]赵珺.Data Mining and Knowledge Discovery in Industrial[J],Mathematical Problems in Engineering,2013,8:1-2
[91]赵珺,王伟,刘颖.ExtendedKalman filter-basedElmannetworksforindustrialtime[J],Neurocomputing,2013,118(10):215-224
[92]刘全利,王伟,赵珺.发挥科研团队综合优势,提高研究生培养质量-以控制科学与工程学科为例[J],学位与研究生教育,2013,30(242):27-30
[93]Han, Zhongyang,Liu, Ying,Zhao, Jun,Wang, Wei.Real time prediction for converter gas tank levels based on multi-output least square support vector regressor[J],CONTROL ENGINEERING PRACTICE,2012,20(12):1400-1409
[94]Zhao, Jun,Liu, Quanli,Pedrycz, Witold,Li, Dexiang.Effective Noise Estimation-Based Online Prediction for Byproduct Gas System in Steel Industry[J],IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2012,8(4):953-963
[95]盛春阳,赵珺,王伟,刘颖.基于数据的高炉煤气系统模糊辨识[A],第23届过程控制会议,2012,1-8
[96]Liu, Ying,Liu, Quanli,Wang, Wei,Zhao, Jun,Leung, Henry.Data-driven based model for flow prediction of steam system in steel industry[J],INFORMATION SCIENCES,2012,193:104-114
[97]Zhao, Jun,Liu, Ying,Zhang, Xiaoping,Wang, Wei.A MKL based on-line prediction for gasholder level in steel industry[J],CONTROL ENGINEERING PRACTICE,2012,20(6):629-641
[98]Zhao, Jun,Wang, Wei,Pedrycz, Witold,Tian, Xiangwei.Online Parameter Optimization-Based Prediction for Converter Gas System by Parallel Strategies[J],IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2012,20(3):835-845
[99]Sheng, Chunyang,Zhao, Jun,Liu, Ying,Wang, Wei.Prediction for noisy nonlinear time series by echo state network based on dual estimation[J],NEUROCOMPUTING,2012,82:186-195
[100]Liu, Quanli,Zhao, Jun,Wang, Wei,Wang, Yuanbao.An echo state network based on error compensation for prediction of nonlinear time series in industry[A],3rd International Conference on Manufacturing Science and Engineering (ICMSE 2012),2012,482-484:99-102

相关热点

扫码添加好友