黄辉
近期热点
资料介绍
个人简历
个人简介Personal Profile黄辉,男,1974年生于福州,现为大连理工大学电子科学与技术学院的教师,致力于半导体光电子器件以及光电子集成方面的研究。在器件方面,主要从事半导体光电子器件(如高性能光电探测器)、光学微流控生物传感器、集成纳米线传感器、光纤传感器的研究。在材料方面,主要从事GaN材料系纳米线的生长研究。器件方面的原创成果有:基于Fabry-Perot谐振腔的高灵敏度生物传感器;基于金属毛细管的高灵敏度生化传感器;薄膜光纤压力传感器;单纳米线晶体管;液晶调谐的谐振腔增强型(RCE)光电探测器;基于微空气隙的长波长、高速RCE光电探测器;及高速、窄线宽、可调谐的“一镜斜置三镜腔”光电探测器。材料工艺方面的原创成果有:在半导体外延层上制备倾角可控、表面平坦的楔型结构;基于特殊表面化学处理的GaAs/InP、InP/Si和Si/Si低温晶片键合; GaAs/InP和Si/GaAs间的异质外延生长;以及在Si衬底上生长III-V族半导体单晶纳米线。主要学习与工作经历 1991.9至1995.9,福州大学 电子科学与应用物理系,本科学习;1995.9至1998.9,福州大学 物理化学专业,硕士研究生;1998.9至2001.12,北京邮电大学 电磁场与微波技术专业,博士研究生;2002.3至2008.12,北京邮电大学 原电信工程学院,历任讲师、副教授;2008.12至2011.3,北京邮电大学 信息光子学与光通信研究院,教授;2011.3 至今,大连理工大学 电子科学与技术学院,教授。获奖情况 2005年获教育部“新世纪人才支持计划”资助;2006年获北京市“科技新星计划” 的资助;2006年度中国高等学校十大科技进展(本人第二完成人);2006北京市科技奖二等奖(本人第二完成人)“高速窄线宽可调谐的解复用光接收集成器件及其关键制备工艺”(2006电-2-006-02)。专利 一种基于液滴的光学显微镜系统及其方法 一种光纤压力传感器及其制备方法 一种基于纳米线有序排列的纳米线器件制备方法 科研项目 基于导光金属毛细管的便携式、高灵敏度光度计研究, 国家自然科学基金项目, 2017/08/17, 完成 半导体纳米异质结构的基础研究和集成传感器, 国家自然科学基金项目, 2016/12/01, 完成 基于异质结纳米线的xxxxx测仪, 国际合作项目, 2015/01/01, 完成 在硅衬底上生长InAs纳米线及研制InAs纳米线告诉晶体管, 企事业单位委托科技项目, 2011/11/15-2013/11/15, 完成 面向光电子集成的高性能硅基III-V族纳米线红外光电探测器, 国家自然科学基金项目, 2013/09/25-2017/12/31, 完成 微流体染料2017, 其他课题, 2017/09/01, 进行 授课信息 电子材料与器件 /2019-2020 /春学期 /32课时 /2.0学分 /1020740450 电子材料与器件 /2019-2020 /春学期 /32课时 /2.0学分 /1020740450 半导体材料与器件 /2018-2019 /春学期 /32课时 /2.0学分 /1020240100 半导体材料与器件 /2017-2018 /春学期 /32课时 /2.0学分 /1020240100 学术荣誉 教育部\研究领域
1.金属毛细管生化传感器:光度计是检测液体中微量物质的常用仪器之一。受限于微弱吸光度检测,现有光度计对微量物质的检测能力亟需改善。我们发明了金属毛细管光度计,利用金属毛细管中的非线性光程增强效应,对微量物质的检测能力提高三千多倍。已经完成重金属、葡萄糖、油水和凝血酶的检测,检测指标处于国际领先水平。Scientific Reports,5,10476 (2015);Optics Express,24, 14538(2016); Sensors and Actuators B:243(2017)12552.Fabry-Perot光学微流控生化传感器:“光流控”传感器将在生化分析领域引发技术革命(Nature Photon.5(2011)591-597)。发明了:基于SOI衬底的传感器制备技术;集成光学差分检测系统。检测精度达10-9 RIU,比现有SPR设备高出1~2个数量级。Optics Express, 22, 31977 (2014);Appl. Phys. Lett., 102, 163701 (2013);Appl. Phys. Lett., 100, 233705 (2012)3.光纤传感器:创新采用应变膜偏心反射结构,研制出高灵敏度、低成本的光纤压力传感器、加速度传感器、以及应变传感器。其中应变传感器,创新采用温度大范围精密可调的应变传递杆,实现了传感器的温度系数可调,可以消除各种待测物的热膨胀影响,从而精确测定受力导致的应变。Scientific Reports,7,42430(2017); Applied Optics,52,4223,2013; DOI: 10.1364/ACPC.2015.AS4I.24.纳米线集成传感器: 结合“微槽结构”与“介电泳排列技术”,实现单根纳米线的大规模排列,制备出单根“InAs/InP”纳米线晶体管,室温迁移率达到22300 cm2/vs,是目前最高的InAs纳米线室温迁移率。Nanotechnology, 24(2013) 245306;Phys. Status Solidi A, Vol.212, No.3, 617–622 (2015). 5.半导体纳米线生长:(1)首次在硅衬底上生长出无缺陷GaAs单晶纳米线,消除晶格失配对纳米线生长限制;(2)发现一成核模式,调节吸附原子扩散,可调控纳米线晶体结构;(3)在纳米线侧壁生长“量子点”“纳米环”“纳米岛”,实现三者间可控生长;(4)优化催化剂组分和源材料,生长高质量GaN纳米线。Nano Lett.10(2010)64;JAP113(2013)114301;Nanotech.21(2010)475602;PSSA210(2013)2689;Phys. E,57 (2014) 145;6.高性能光电探测器:1).首次在硅衬底上生长和制备具有滤波腔的红外光电探测器;2).在GaAs衬底上生长和制备InP系长波长、可调谐的光电探测器;3).硅晶片和InP晶片的低温键合;4).制备了基于楔形腔的长波长、可调谐、高速、高灵敏度的光电探测器;5).在InP基外延层上制备出倾角可控、表面平坦的楔形结构;6).发明可控自推移动态掩膜湿法刻蚀技术,用于制备薄层楔形结构;7).制备微空气隙的长波长光电探测器。此方向发表知名论文二十余篇。""近期论文
[1]Bai, Min,Cirlin, George,Huang, Hui,Liu, Zhe,Zhan, Tingting,Xia, Shufeng,Li, Xiaogan,Sibirev, Nickolay,Bouravleuv, Alexei,Dubrovskii, Vladimir G..InAs/InP core/shell nanowire gas sensor: Effects of InP shell on sensitivity and long-term stability[J],APPLIED SURFACE SCIENCE,2019,498 [2]Xu, Siyu,Huang, Hui,Cai, Weicheng,Zhong, Yuan,Li, Dongsheng,Chen, Xiaoming,Zhang, Jianwei.Compact, low-cost, and highly sensitive optical fiber hydrophone based on incident angle sensing[J],APPLIED OPTICS,2019,58(28):7774-7780 [3]Wang, Weiming,Yu, Yan,Huang, Hui.A portable high-resolution microscope based on combination of fiber-optic array and pre-amplification lens[J],MEASUREMENT,2018,125:371-376 [4]Wang, Hongkai,Yang, Jia,Tan, Ziyu,Hui, Libo,Liu, Yue,Pan, Hang,Qu, Yue,Chen, Zhaofeng,Tan, Liwen,Yu, Lijuan,Shi, Hongcheng,Sun, Xiaobang,Huo, Li,Zhang, Yanjun,Tang, Xin,Zhang, Shaoxiang,Liu, Changjian,Wu, Tongning,Li, Congsheng,Chen, Zhonghua,Liao, Meiying,Li, Mengci,Yan, Wen,Huang, Hui.Deformable torso phantoms of Chinese adults for personalized anatomy modelling.[J],Journal of anatomy,2018,233(1):121-134 [5]Wang, Weiming,Li, Long,Yu, Yan,Huang, Hui.Yeast concentration analysis by using the portable microscope based on the fiber-optic array[A],NANO-, BIO-, INFO-TECH SENSORS, AND 3D SYSTEMS II,2018,10597 [6]Ye, Jiqing,Zhang, Yue,Huang, Hui,Wang, Jian,Jiang, Zhou,Bai, Min.Highly sensitive detection of thrombin using metal-waveguide-capillary based photometer and gold nanorods probe[J],SENSORS AND ACTUATORS B-CHEMICAL,2017,243:1255-1260 [7]牛立群,王伟明,喻言,黄辉,白敏,王兵.重金属监测的光学单元无线化系统设计与研究[J],传感技术学报,2017,30(3):433-437 [8]Hu, Jie,Huang, Hui,Bai, Min,Zhan, TingTing,Yang, ZhiBo,Yu, Yan,Qu, Bo.A high sensitive fiber-optic strain sensor with tunable temperature sensitivity for temperature-compensation measurement[J],SCIENTIFIC REPORTS,2017,7:42430 [9]Zhao, Danna,Huang, Hui,Lv, Rui,Chen, Shunji,Guang, Qiyilan,Zong, Yang,Liu, Zhe,Li, Xiqing.Controlled growth of aligned GaN nanostructures: from nanowires and needles to micro-rods on a single substrate[J],RSC ADVANCES,2017,7(80):50781-50785 [10]喻言,黄辉.Design and initial validation of wireless system for oil monitoring base on optical sensing unit[A],2017,10168:1-5 [11]Zong, Yang,Huang, Hui,Song, Wenbin,Lv, Rui,Zhao, Danna,Liu, Zhe,Guang, Qiyilan,Guo, Jingwei,Tang, Zhenan.Growth of oriented GaN nanowires by controlling nucleation conditions[J],CRYSTAL RESEARCH AND TECHNOLOGY,2016,51(12):757-761 [12]Bai, Min,Huang, Hui,Yu, Yan,Hao, Jian,Zhang, Ji,Fan, Jianchao,Yan, Jun.Trace analysis of oil-in-water by using visible LED and metal waveguide capillary[J],OPTICS EXPRESS,2016,24(13):14538-14545 [13]Wang, Weiming,Yu, Yan,Huang, Hui,Ou, Jinping.Portable microscopy platform for the clinical and environmental monitoring[A],Conference on Nanosensors, Biosensors, and Info-Tech Sensors and Systems,2016,9802 [14]Bai, Min,Huang, Hui,Hao, Jian,Zhang, Ji,Wu, Haibo,Qu, Bo.A compact photometer based on metal-waveguide-capillary: application to detecting glucose of nanomolar concentration[J],SCIENTIFIC REPORTS,2015,5:10476 [15]Liu, Pengbo,Huang, Hui,Liu, Xueyu,Bai, Min,Zhao, Danna,Tang, Zhenan,Huang, Xianliang,Kim, Ji-Yeun,Guo, Jinwei.Core-shell nanowire diode based on strain-engineered bandgap[J],PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE,2015,212(3):617-622 [16]Wu, Haibo,Huang, Hui,Bai, Min,Liu, Pengbo,Chao, Ming,Hu, Jie,Hao, Jian,Cao, Tun.An ultra-low detection-limit optofluidic biosensor based on all glass Fabry-Perot cavity[J],OPTICS EXPRESS,2014,22(26):31977-31983 [17]Ren, Mingkun,Huang, Hui,Wu, Haibo,Zhao, Danna,Zhu, Huichao,Liu, Yan,Sun, Baojuan.Growth of high quality GaN nanowires by using Ga/GaCl3 sources[J],PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES,2014,57:145-148 [18]Zhang, Xu,Sun, Xiao-Hong,Huang, Hui,Wang, Xishi,Huang, Yongqing,Ren, Xiaomin.Optical absorption in InP/InGaAs/InP double-heterostructure nanopillar arrays for solar cells[J],APPLIED PHYSICS LETTERS,2014,104(6) [19]黄辉,唐祯安.An ultra-low detection-limit optofluidic biosensor based on Fabry-Pérot cavity[A],2014,11(1):1264-1268 [20]Zhao, Danna,Huang, Hui,Wu, Haibo,Ren, Mingkun,Zhu, Huichao,Liu, Yan,Sun, Baojuan.Influence of Ni and Au/Ni catalysts on GaN nanowire growth[J],PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE,2013,210(12):2689-2692 [21]Cao, Tun,Zhang, Lei,Xiao, Zai-peng,Huang, Hui.Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime[J],JOURNAL OF PHYSICS D-APPLIED PHYSICS,2013,46(39) [22]Liu, Xueyu,Tang, Zhenan,Liu, Pengbo,Huang, Hui,Chen, Changxin,Jin, Tiening,Zhang, Yafei,Huang, Xianliang,Jin, Zhiyuan,Li, Xiaogan.Growth and large-scale assembly of InAs/InP core/shell nanowire: effect of shell thickness on electrical characteristics[J],NANOTECHNOLOGY,2013,24(24):245306 [23]Qi, Zhenbin,Huang, Hui,Cao, Tun,Liu, Pengbo,Tang, Zhenan,Qu, Bo.Highly sensitive fiber pressure sensor based on off-center diaphragm reflection[J],APPLIED OPTICS,2013,52(18):4223-4227 [24]Liu, Pengbo,Huang, Hui,Cao, Tun,Liu, Xueyu,Qi, Zhenbin,Tang, Zhenan,Zhang, Jinnan.An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Perot cavity[J],APPLIED PHYSICS LETTERS,2013,102(16) [25]Guo, Jingwei,Huang, Hui,Zhang, Jianwei,Li, Xiaogan,Huang, Yongqing,Ren, Xiaomin,Ji, Zhuoyu,Liu, Ming.Morphological control of GaAs/InAs radial heterostructure nanowires: From cylindrical to coherent quantum dot structure[J],JOURNAL OF APPLIED PHYSICS,2013,113(11) [26]黄辉.An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity[J],Appl. Phys. Lett.,2013,102(2):163701-163701 [27]黄辉,陈晓明,李晓干,唐祯安.Growth and large-scale assembly of InAs/InAs/InP core/shell nanowire: effect of shell thickness on electrical characteristics[J],Nanotechnology,2013,24(24):245-306 [28]黄辉.Growth of high quality GaN nanowires by using Ga/GaCl3 sources[J],Physica E,2013,57(10):145-148 [29]黄辉.Growth and large-scale assembly of InAs/InP core/shell nanowire: effect of shell thickness on electrical characteristic[J],Nanotechnology,2013,24(2):245306-245306 [30]Guo, Jingwei,Huang, Hui,Ding, Yizheng,Ji, Zhuoyu,Liu, Ming,Ren, Xiaomin,Zhang, Xia,Huang, Yongqing.Growth of zinc blende GaAs/AlGaAs heterostructure nanowires on Si substrate by using AlGaAs buffer layers[J],JOURNAL OF CRYSTAL GROWTH,2012,359(1):30-34 [31]Liu, Pengbo,Huang, Hui,Cao, Tun,Tang, Zhenan,Liu, Xueyu,Qi, Zhenbin,Ren, Mingkun,Wu, Haibo.An optofluidics biosensor consisted of high-finesse Fabry-Perot resonator and micro-fluidic channel[J],APPLIED PHYSICS LETTERS,2012,100(23) [32]Yan, Xin,Huang, Yongqing,Zhang, Xia,Ren, Xiaomin,Huang, Hui,Guo, Jingwei,Guo, Xin,Liu, Minjia,Wang, Qi,Cai, Shiwei.Growth of InAs Quantum Dots on GaAs Nanowires by Metal Organic Chemical Vapor Deposition[J],NANO LETTERS,2011,11(9):3941-3945 [33]Guo, Jingwei,Huang, Hui,Ren, Xiaomin,Yan, Xin,Cai, Shiwei,Wang, Wei,Wang, Qi,Huang, Yongqing,Zhang, Xia.Growth and optical properties of InP nanowires formed by Au-assisted metalorganic chemical vapor deposition: Effect of growth temperature[J],JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B,2011,29(3) 相关热点
最新收录
- Sien小慧君 05-22
- 罗杰叔叔(Uncle Roger) 05-22
- 悉尼妹(Sydney Sweeney) 05-22
- 玩具砖家 05-19
- 行走的大大大羊腿 05-19
- 梦飞大大 05-19
- 晏安anan 05-19
- 恰饭DZZ 05-19
- 爱玩具的大成 05-19
- 爱拍照的玉老师 05-19