热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
靳治良
2023-05-05 15:27
  • 靳治良
  • 靳治良 - 博士生导师-北方民族大学-化学与化学工程学院-个人资料

近期热点

资料介绍

个人简历


基本简况\r
靳治良,男,汉族,研究员,正高职高级工程师,甘肃静宁人。国家民委清洁能源与绿色化工创新团队带头人,国家民委领军人才,国家民委化工技术基础重点实验室主任,宁夏太阳能化学转化技术重点实验室主任,宁夏材料学会副理事长,中国能源学会新能源专家委员会委员,中国化工教育协会理事。主持并完成科研项目24项,发表研究论文140余篇,其中SCI收录106篇,参编学术专著1部,副主编教材2部,论文他引2156次(截止2019年12月30日)。\r
\r
★1987年7月毕业于西北大学化工系;\r
★1987年8月~2000年7月在原兰州煤气厂工作,历任技术员、车间副主任、技术科副科长、科长、安全环保科科长、总调度长等职;\r
★2000年8月~2003年7月中国科学院盐湖研究所读硕士;\r
★2003年8月~2006年6月中国科学院兰州化学物理研究所读博士;\r
★2006年7月~2014年8月在中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室工作,主要从事清洁能源、环境催化及文化遗产保护相关领域的研究工作;\r
★2014年9月~至今在北方民族大学化学与化学工程学院工作,主要承担本科生及研究生《化工工艺学》、《煤化工工艺学》、《工业催化基础》、《化工设计》、《化工制图》、《化工专业导论》、《现代化工进展》、《精细化工》等课程的教学工作及相关科研工作;\r
★期间曾分别于1988年5~10月;1990年1~6月;1995年10~12月;1996年5~6月;2009年12~2010年3月在捷克、日本做合作项目。\r
★2005年任高级工程师,2008年任副研究员,2012年任研究员,2015年任正高职高级工程师。

研究领域


""1、清洁能源(光催化分解水制氢);\r
2、环境化工(环境污染物消除及资源化利用);\r
3、文化遗产保护(硅酸盐质文物盐害机理及防治)。""""

近期论文


2020年 \r
\r
1. Yanbing Li, Zhiliang Jin* et al., Performance of ZIF-67 - derived fold polyhedrons for enhanced photocatalytic hydrogen evolution, Chem. Eng. J., 2020, 382,123051. (IF = 10.652)\r
\r
2. Lijun Zhang, Zhiliang Jin* et al., Construction strategy of Mo-S@Mo-P heterojunction formed with in-situ phosphating Mo-S nanospheres toward efficient photocatalytic hydrogen production, Chem. Eng. J., 2020, 391, 123545.(IF = 10.652)\r
\r
3. Lijun Zhang, Zhiliang Jin* et al., MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J., 2020, 395, 125113.(IF = 10.652)\r
\r
4. Lijun Zhang, Zhiliang Jin* et al., Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improve the hydrogen evolution, J. Mater. Sci. Technol.,2020, 49, 144 - 156. (IF = 6.155)ESI 高被引.\r
\r
5. Yuanpeng Wang, Zhiliang Jin* et al., Rational design of all-solid-state 0D/2D Mn0.2Cd0.8S/CeO2 direct Z-scheme for photocatalytic hydrogen evolution, Energy and Fuels, 2020, 34(2), 2599 - 2611. (IF = 3.50)\r
\r
6. Yanbing Li, Zhiliang Jin* et al., Distinctive improved synthesis and application extensions graphdiyne for efficient photocatalytic hydrogen evolution, ChemCatChem, 2020, 12, 1985 - 1995.(IF = 4.853)\r
\r
7. Lijun Zhang, Zhiliang Jin* et al., Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution, Appl. Surf. Sci., 2020, 499, 143862. (IF = 6.182)ESI 高被引.\r
\r
8. Lijun Zhang, Zhiliang Jin* et al., Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution, Chin. J. Catal., 2020, 41, 82 - 94. (IF = 6.146)ESI 高被引.\r
\r
9. Xian Yan, Zhiliang Jin* et al., 3D layered nano-flower Mo15S19 anchored with CoP nanoparticles form double proton adsorption site for enhanced photocatalytic hydrogen evolution under visible light driven, Int. J. Hydrogen Energ., 2020, 45, 2578 – 2592. (IF = 4.084)\r
\r
10. Hua Liu, Zhiliang Jin* et al., CoP nanoparticles as cocatalyst modified the CdS/NiWO4 p-n heterojunction to produce hydrogen efficiently, New J. Chem., 2020, 44, 1426 - 1438. (IF = 3.069)\r
\r
11. Yue Cao, Zhiliang Jin* et al., An amorphous nickel boride-modified ZnxCd1-xS solid solution for enhanced photocatalytic hydrogen evolution, Dalton Trans., 2020, 49, 1220 – 1231. (IF = 4.052)\r
\r
12. Qiyan Jian, Zhiliang Jin* et al., Amorphous tungsten phosphosulphide modified CdS nanorods as highly efficient electron-cocatalyst for enhanced photocatalytic hydrogen production, Phys. Chem. Chem. Phys., 2020, 22, 1932 - 1943. (IF = 3.567)亮点文章.\r
\r
13. Yupeng Zhang, Zhiliang Jin* et al., Efficient photocatalytic hydrogen production achieved by WO3 coupled with NiP2 over ZIF-8, Catal. Sur. Asia, 2020, 24(1), 59 - 69. (IF = 2.250)\r
\r
14. Hongying Li, Zhiliang Jin* et al., Based on amorphous carbon C@ZnxCd1-xS/Co3O4 composite for efficient photocatalytic hydrogen evolution, Int. J. Hydrogen Energ., 2020, 45, 8405 - 8417.(IF = 4.084)\r
\r
15. Yanbing Li, Zhiliang Jin* et al., Ni, Co-based selenide anchored g-C3N4 for boosting photocatalytic hydrogen evolution, Acta Phys. – Chim. Sin., 2020, 36, 1912033.(IF = 1.05).\r
\r
16. Haiming Gong, Zhiliang Jin* et al., Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution, Mol. Catal., 2020, 485, 110832. (IF = 4.397)\r
\r
17. Yanbing Li, Zhiliang Jin* et al., Self-assembly of zinc cadmium sulfide nanorods into nanoflowers with enhanced photocatalytic hydrogen production activity, J. Colloid. Interf. Sci., 2020, 567, 357 – 368. (IF = 7.489)\r
\r
18. Xian Yan, Zhiliang Jin* et al., Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation, J. Colloid. Interf. Sci., 2020, 569, 34 – 49. (IF = 7.489)\r
\r
19. Junke Li*, Zhiliang Jin* et al., 0D/2D spatial structure of CdxZn1-xS/Ni-MOF-74 for efficient photocatalytic hydrogen evolution, Dalton Trans., 2020, 49, 5143 – 5256. (IF = 4.052)\r
\r
20. Hongying Li, Zhiliang Jin* et al., ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution, J. Colloid. Interf. Sci., 2020, 572, 62 - 73 .(IF = 7.489)\r
\r
21. Yanbing Li, Zhiliang Jin* et al., Phosphating 2D CoAl-LDH anchored on 3D self-assembled NiTiO3 hollow rod for efficient hydrogen evolution, Catal. Sci. Technol., 2020, 10, 2931 – 2947. (IF = 5.721)\r
\r
22. Peng Su, Zhiliang Jin* et al., Enhanced hydrogen evolution over sea-urchin-structure NiCoP decorated ZnCdS photocatalyst, Catal. Lett., 2020, 150(10), 2937 – 2950.(IF = 2.482)\r
\r
23. Haiyu Wang, Zhiliang Jin* et al., High electron conductivity of Ni/Ni3C nanoparticles anchored on C-rich graphitic carbon nitride for obviously improving hydrogen generation, Ind. Eng. Chem. Res. (I&EC), 2020, 59(19), 8974 – 8983. (IF = 3.58)\r
\r
24. Guorong Wang, Zhiliang Jin* et al., “Ship in a Bottle” design of ZIF-9@CoAl LDH hybrid compound as a high performance asymmetric supercapacitor, New J. Chem., 2020, 44, 7528 – 7540.(IF = 3.069)\r
\r
25. Junke Li, Zhiliang Jin* et al., Synergistic effect of MoS2 over WP photocatalyst for promoting hydrogen production, J. Solid State Chem., 2020, 288, 121419. (IF = 2.27)\r
\r
26. Yue Cao, Zhiliang Jin* et al., Amorphous NiCoB nanoalloy modified Mn0.05Cd0.95S for potocatalytic hydrogen evolution, Mol. Catal., 2020, 492, 111001. (IF = 4.397)\r
\r
27. Guorong Wang, Zhiliang Jin* et al., Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors, J. Colloid. Interf. Sci., 2020, 577, 115 – 126. (IF = 7.489)\r
\r
28. Xuqiang Hao, Zhiliang Jin* et al., TiO2 as an interfacial-charge-transfer-bridge to construct eosin Y-mediated direct Z-scheme electron transfer over Co9S8 quantum dot/TiO2 photocatalyst, Catal. Sci. Technol., 2020, 10, 5267 – 5280. (IF = 5.721)\r
\r
29. Haiming Gong, Zhiliang Jin* et al., Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution, Int. J. Hydrogen Energ., 2020, (Doi: org/10.1016/j.ijhydene.2020.07.059).(IF = 4.084)\r
\r
30. Hongying Li, Zhiliang Jin* et al., Phosphated 2D MoS2 nanosheets and 3D NiTiO3 nanorods for efficient photocatalytic hydrogen evolution, ChemCatChem, 2020,(DOI: 10.1002/cctc.202000903).(IF = 4.853)\r
\r
31. Yuanpeng Wang, Zhiliang Jin* et al., Rational design of a core-shell-shaped flowerlike Mn0.05Cd0.95S@NiAl-LDH structure for efficient hydrogen evolution, Catal. Lett., 2020, (Doi: 10.1007/s10562-020-03346-1)(IF = 2.482)\r
\r
32. Yanbing Li, Zhiliang Jin* et al., CoAl LDH@Ni-MOF-74 S-scheme heterojunction for efficient hydrogen evolution, Trans Tianjin Univ.,2020, (Doi:org/10.1007/s12209-020-00269-1).\r
\r
33. Lijun Zhang, Zhiliang Jin* et al., Graphdiyne formed S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution over rational design novel CuI-GD/g-C3N4 composite, Sustainable Energy and Fuels, 2020, 4, 5088 - 5101. (IF = 5.503)\r
\r
34. Teng Yan, Zhiliang Jin* et al., Mn0.05Cd0.95S nanoparticles anchored on cubic NiSe2 for efficient photocatalytic hydrogen production, New J. Chem., 2020, 44, 14879 – 14889. (IF = 3.288)\r
\r
35. Guorong Wang, Zhiliang Jin* et al., Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well, Renewable Energy, 2020, (IF = 6.274)\r
\r
36. Guorong Wang, Zhiliang Jin* et al., Oxygen-vacancy-rich hydrated bimetallic chloride for supercapacitor cathode with remarkable enhanced performance, Inter. J. Energy Res., 2020, (Doi: 10.1002/er.5986).(IF = 6.146)\r
\r
37. Peng Su, Zhiliang Jin* et al., Sea-urchin-structure NiCo2O4 decorated Mn0.05Cd0.95S p-n heterojunction for enhanced photocatalytic hydrogen evolution, Dalton Transa., 2020, ( Doi: 10.1039/D0DT02753G).(IF = 4.052)\r
\r
38. Guorong Wang, Zhiliang Jin* et al., Ordered self-supporting NiV LDHs@P-nickel foam nano-array as high-performance supercapacitor electrode, J. Colloid. Interf. Sci., 2020, 579, 111 – 122. (IF = 7.489)\r
\r
39. Yang Liu, Zhiliang Jin* et al., High efficiency electron transfer realized over NiS2/MoSe2 S-scheme heterojunction in photocatalytic hydrogen evolution, Acta Phys. – Chim. Sin., 2020, 37, 2008030.(IF = 1.05)\r
\r
40. Hongying Li, Zhiliang Jin* et al., Efficient hydrogen production over rational designed MoSe2@Co3O4 p-n heterojunction, J. Colloid. Interf. Sci., 2020, Accepted.(IF = 7.489)\r
\r
41. Xian Yan, Zhiliang Jin* et al., Interface engineering: NiAl-LDH in-situ derived NiP2 quantum dots and Cu3P nanoparticles ingeniously constructed p-n heterojunction for photocatalytic hydrogen evolution, Chem. Eng. J., 2020, Accepted. (IF = 10.652)\r
\r
\r
2019年 \r
\r
\r
42. Yongke Zhang, Zhiliang Jin*, Accelerated charge transfer via nickel tungstate modulated cadmium sulfide p-n heterojunction for photocatalytic hydrogen evolution, Catal. Sci. Technol., 2019, 9, 1944 - 1960.(IF = 5.726)\r
\r
43. Yongke Zhang, Zhiliang Jin*, Boosting photocatalytic hydrogen evolution achieved by NiSx coupled with g-C3N4@ZIF-67 heterojunction, J. Phys. Chem. C., 2019, 123, 18248 – 18263. (IF = 4.309)\r
\r
44. Haiyu Wang, Zhiliang Jin*, A rational designed W-doped Co-ZIF-9 based Co3S4 composite photocatalyst for efficient visible-light-driven photocatalytic H2 evolution, Sustainable Energy & Fuels, 2019, 3, 173 - 183. (IF = 4.912)\r
\r
45. Yuanpeng Wang, Zhiliang Jin*, et al., Hydroxides Ni-Ce-OH as a novel holes storage layer for enhanced photocatalytic hydrogen evolution, Dalton Transa., 2019, 48, 17660 – 17672. (IF = 4.05)\r
\r
46. Yongke Zhang, Zhiliang Jin*, et al., Synergistic enhancement of hydrogen production by ZIF-67(Co) derived Mo-Co-S modified g-C3N4/rGO photocatalyst, Catal. Lett., 2019, 149(1),34 - 48.(IF = 2.372)\r
\r
47. Yupeng Zhang, Zhiliang Jin*, et al., Charge separation and electron transfer routes modulated with Co-Mo-P over g-C3N4 photocatalyst, Mole. Catal., 2019, 462, 46 - 55. (IF = 5.008)\r
\r
48. Yanbing Li, Zhiliang Jin*, et al., Effect of electron-hole separation in MoO3@Ni2P hybrid nanocomposite as highly efficient metal-free photocatalyst for H2 production, J. Colloid. Interf. Sci., 2019, 537, 629 - 639. (IF = 6.361)\r
\r
49. Guorong Wang, Zhiliang Jin*, et al., Function of NiSe2 over CdS nanorods for enhancement of photocatalytic hydrogen production — from preparation to mechanism, Appl. Sur. Sci., 2019, 467 - 468, 1239 - 1248.(IF = 5.155)\r
\r
50. Yanbing Li, Zhiliang Jin*, et al., Unique photocatalytic activities of transition metal phosphide for hydrogen evolution, J. Colloid. Interf. Sci., 2019, 541, 287 – 299. (IF = 6.361)\r
\r
51、Yanbing Li, Zhiliang Jin*, et al., Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production, Chin. J. Catal., 2019, 40(3), 390 – 402.(IF = 4.914)ESI 高被引.\r
\r
52. Zejin Wang, Zhiliang Jin*, et al., Synergistic interface phenomena between MOFs, NiPx for efficient hydrogen production, Mole. Catal., 2019, 467, 78 – 86. (IF = 5.008)\r
\r
53、Lijun Zhang, Zhiliang Jin*, et al., Properties of iron vanadate over CdS nanorods for efficient photocatalytic hydrogen production, New J. Chem., 2019, 43, 3609 – 3618. (IF = 3.069)\r
\r
54、Xian Yan, Zhiliang Jin*, et al., Controllable design of double metal oxide (NiCo2O4) modified CdS for efficient photocatalytic hydrogen production, Phys. Chem. Chem. Phys., 2019, 21, 4501 – 4512. (IF = 3.567)\r
\r
55. Yupeng Zhang, Zhiliang Jin*, et al., Effect of Ni(OH)2 on CdS@g-C3N4 composite for efficient photocatalytic hydrogen production, Catal. Lett., 2019, 149(5), 1174 - 1185. (IF = 2.372)\r
\r
56. Qiyan Jian, Zhiliang Jin*, et al., Photoelectron directional transfer over g-C3N4/CdS heterojunction modulated with WP for efficient photocatalytic hydrogen evolution, Dalton Transa., 2019, 48, 4341 – 4352. (IF = 4.052)\r
\r
57. Guorong Wang, Zhiliang Jin*, Rationally designed functional Ni2P nanoparticles as co-catalyst modified CdS@g-C3N4 heterojunction for efficient photocatalytic hydrogen evolution, Chem. Select, 2019,. 4(12), 3602 – 3610. (IF = 1.716)\r
\r
58. Haiyu Wang, Zhiliang Jin*, et al., CoSe2/CdS-diethylenetriamine coupled with P clusters for efficient photocatalytic hydrogen evolution, Dalton Transa., 2019, 48, 4015 – 4025. (IF = 4.052)\r
\r
59. Yongke Zhang, Zhiliang Jin*, et al., An orderly assembled g-C3N4, rGO and Ni2P photocatalyst for efficient hydrogen evolution, Int. J. Hydrogen Energ., 2019, 44, 10316 - 10327. (IF = 4.084)\r
\r
60. Lijun Zhang, Zhiliang Jin*, et al., Ferrous oxalate dehydrate over CdS as Z-scheme photocatalytic H2 evolution, J. Solid State Chem., 2019, 274, 286 - 294. (IF = 2.291)\r
\r
61、Lijun Zhang, Zhiliang Jin*, et al., Growth of Zn0.5Cd0.5S/α-Ni(OH)2 heterojunction by a facile hydrothermal transformation efficiently boosting photocatalytic hydrogen production, New J. Chem., 2019. 43, 6411 - 6421. (IF = 3.069)\r
\r
62、Yongke Zhang, Zhiliang Jin*, et al., Effective electron-hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution, Phys. Chem. Chem. Phys., 2019, 21, 8326 - 8341. (IF = 3.567)\r
\r
63、Haiyu Wang, Zhiliang Jin*, Boosting photocatalytic hydrogen evolution achieved by rationally designed/constructed carbon nitride with ternary cobalt phosphosulphide, J. Colloid. Interf. Sci., 2019, 548, 303 - 311. (IF = 6.361)\r
\r
64. Yupeng Zhang, Zhiliang Jin*, et al., Special Z-scheme CdS@WO3 hetero-junction modified with CoP for efficient hydrogen evolution, Int. J. Hydrogen Energ., 2019, 44(26), 13232 - 13241. (IF = 4.084)\r
\r
65. Junnan Pu, Zhiliang Jin*, et al., g-C3N4/Cu3P/UiO-66 ternary composites for enhanced visible light photocatalytic H2 evolution, Chem. Select, 2019, 4(12), 5459 – 5469. (IF = 1.716)\r
\r
66. Qiyan Jian, Zhiliang Jin*, et al., Orderly-designed functional phosphide nanoparticles modified g-C3N4 for efficient photocatalytic hydrogen evolution, J. Sol-Gel Sci. Techn., 2019, 90, 565 - 577.(IF = 1.986)\r
\r
67. Yanbing Li, Zhiliang Jin*, et al., Insights into the unique rolet of cobalt phosphide for boosting hydrogen evolution activity based on MIL-125-NH2, Int. J. Hydrogen Energ., 2019, 44, 17909 - 17921. (IF = 4.084)\r
\r
68. Zejin Wang, Zhiliang Jin*, et al., Inserting MOF into flaky CdS photocatalyst forming special structure and active sites for efficient hydrogen production, Int. J. Hydrogen Energ., 2019, 44(36), 19640 – 19649.(IF = 4.084)\r
\r
69. Lijun Zhang, Zhiliang Jin*, et al., Fenglan Han, Zn-Ni-P nanoparticles decorated g-C3N4 nanosheets applicated as photoanode in photovoltaic fuel cells, Catal. Lett., 2019, 149(9), 2397 - 2407. (IF = 2.372)\r
\r
70. Xian Yan, Zhiliang Jin*, et al., Sustainable and efficient hydrogen evolution over a noble metal-free WP double modified ZnxCd1-xS photocatalyst driven by visible-light, Dalton Trans., 2019, 48, 11122 - 11135.(IF = 4.052)\r
\r
71、Qiyan Jian, Zhiliang Jin*, et al., Properties of monoclinic wolframite structure InWO4 for efficient and sustainable photocatalytic hydrogen evolution, New J. Chem., 2019. 43, 12668 - 12677. (IF = 3.069)\r
\r
72、Ruizhou Gan, Zhiliang Jin*, et al., CoSe2 clusters as an efficient cocatalyst modified CdS nanorod for enhance visible light photocatalytic H2 evolution, Catalyst, 2019, 9(7), 616. (IF = 3.444)\r
\r
73. Yang Liu, Zhiliang Jin*, et al., CdS photocorrosion prevent from MoSe2 modification, Catal. Sur. Asia, 2019, 23, 231 – 244. (IF = 2.250)\r
\r
74. Yang Liu, Zhiliang Jin*, et al., Noble-metal-free visible light driven hetero-structural Ni/ZnxCd1-xS photocatalyst for efficient hydrogen production, Catal. Lett., 2019, 149(7), 1788 - 1799. (IF = 2.372)\r
\r
75. Lijun Zhang, Zhiliang Jin*, Effective electron-hole separation over controllable construction of CdS/Co-Ni-P core/shell nanophotocatalyst for improved photocatalytic hydrogen evolution under visible-light-driven, Catal. Sur. Asia, 2019, 23, 219 - 230. (IF = 2.250)\r
\r
76. Yang Liu, Zhiliang Jin*, et al., 2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution, J. Colloid. Interf. Sci., 2019, 554, 113 – 124. (IF = 6.361)\r
\r
77. Yongke Zhang, Zhiliang Jin*, et al., Orthorhombic WP co-catalyst coupled with electron transmission bridge UiO-66 for efficient visible-light-driven H2 evolution, J. Colloid. Interf. Sci., 2019, 556, 689 – 703. (IF = 6.361)\r
\r
78. Guorong Wang, Zhiliang Jin*, et al., Phosphated NiCo LDHs 1D dendritic electrode for high energy asymmetric supercapacitor, Dalton Transa., 2019, 48, 14853 – 14863. (IF = 4.052)\r
\r
79. Qiyan Jian, Zhiliang Jin*, et al., Enhanced photocatalytic hydrogen evolution over semi-crystalline tungsten phosphide, Int. J. Hydrogen Energ., 2019, 44(49), 26848 – 26862. (IF = 4.084)\r
\r
80、Haiming Gong, Zhiliang Jin*, et al., WP modified the S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production, New J. Chem., 2019, 43, 19159 – 19171. (IF = 3.069)\r
\r
\r
2018年 \r
\r
81. Kai Fan, Zhiliang Jin*, et al., Distinctive organized molecular assemble of MoS2, MOF and Co3O4 for efficient dye - sensitized photocatalytic H2 evolution, Catal. Sci. Technol., 2018, 8, 2352 - 2363. (IF = 5.726)\r
\r
82. Hao Yang, Zhiliang Jin*, et al., Visible light harvesting and spatial charge separation over creative Ni/CdS/Co3O4 photocatalyst, J. Phys. Chem. C., 2018, 122(19), 10430 - 10441.(IF = 4.309)\r
\r
\r
83. Hao Yang, Zhiliang Jin*, et al., Ni-Mo-S nanoparticles modified graphitic C3N4 for efficient hydrogen evolution, Appl. Surf. Sci., 2018, 427, 587-597. (IF = 4.439)\r
\r
84. Haiyu Wang, Zhiliang Jin*, et al., Novel strategy of defect-induced graphite nitride carbon preparation and photocatalytic performance, Catal. Lett., 2018, 148 (5), 1296 - 1308. (IF = 2.911)\r
\r
85. Haiyu Wang, Zhiliang Jin*, et al., Strategy of nitrogen defects sponge from g-C3N4 nanosheets and Ni-Bi-Se complex modification for efficient dye - sensitized photocatalytic H2 evolution, Mole. Catal., 2018, 453, 1-11.(IF = 4.397)\r
\r
86. Yupeng Zhang, Zhiliang Jin*, et al., Charge transfer behaviors over MOF-5@g-C3N4 with NixMo1-xS2 modification, Int. J. Hydrogen Energ., 2018, 43(21), 9914 – 9923. (IF = 4.229)\r
\r
87. Hao Yang, Zhiliang Jin*, et al., Light-assisted synthesis MoSx as a noble metal free cocatalyst formed heterojunction CdS/Co3O4 photocatalyst for visible light harvesting and spatial charge separation, Dalton Transa., 2018, 47, 6973 – 6985. (IF = 4.099)\r
\r
88. Zejin Wang, Zhiliang Jin*, et al., Efficient hydrogen production over MOFs (ZIF-67) and g-C3N4 boosted with MoS2 nanoparticles, Int. J. Hydrogen Energ., 2018, 43, 13039 – 13050. (IF = 4.229)\r
\r
89. Duanduan Liu, Zhiliang Jin*, et al., Light harvesting and charge management by Ni4S3 modified MOF and rGO in the process of photocatalysis, J. Colloid. Interf. Sci., 2018, 529, 44 – 52. (IF = 5.091)\r
\r
90. Yongke Zhang, Zhiliang Jin*, et al., CdS p-n heterojunction co-boosting with Co3O4 and Ni-MOF-74 for photocatalytic hydrogen evolution, Dalton Transa., 2018, 47, 11176 – 11180. (IF = 4.099)\r
\r
91. Yongke Zhang, Zhiliang Jin*, et al., Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution, Appl. Surf. Sci., 2018, 462(31), 213 - 225. (IF = 4.439)\r
\r
92. Zejin Wang, Zhiliang Jin*, et al., Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting, J. Colloid. Interf. Sci., 2018, 532, 287 – 299. (IF = 5.091)\r
\r
93. Haiyu Wang, Zhiliang Jin*, et al., Design and synthesis of polymeric carbon nitride @ zeolitic imidazolate frameworks (CoWS) semiconductor junction nanowires for efficient photocatalytic hydrogen evolution, New J. Chem., 2018, 42, 17396 - 17406. (IF = 3.201)\r
\r
\r
\r
2017年 \r
\r
94. Xuqiang Hao, Zhiliang Jin*, et al., Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution, Appl. Catal. B: Environ., 2017, 210, 45 – 56. (IF = 14.229)\r
\r
\r
95. Hao Yang, Zhiliang Jin*, et al., Fabrication and behaviors of CdS on Bi2MoO6 thin film photoanodes, RSC Advances., 2017, 7, 10774 – 10781 (IF=3.108). \r
\r
96. Hao Yang, Zhiliang Jin*, et al., Fivefold enhanced photoelectrochemical properties of ZnO nanowire arrays modified with C3N4 quantum dots, Catalysts, 2017, 7(4), 99, 1 - 12 . (IF=3.082).\r
\r
97. Duanduan Liu, Zhiliang Jin*, et al., Modulation of the excited-electron recombination process by introduce g-C3N4 on Bi-based bimetallic oxides photocatalyst, Appl. Surf. Sci., 2017, 423, 255 – 265. (IF = 3.387)\r
\r
98. Hao Yang, Zhiliang Jin*, et al., The Roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity, Superlattices and Microstructures, 2017, 111, 687 – 695. (IF = 2.123)\r
\r
99. Kai Fan, Zhiliang Jin*, et al., Promotion of the excited electron transfer over Ni- and Co - sulfide co-doped g-C3N4 photocatalyst (g-C3N4/NixCo1-xS2) for hydrogen production under visible light irradiation, Scientific Report, 2017, 7, 7710:1-10. (IF = 4.259)\r
\r
100. Duanduan Liu, Zhiliang Jin*, et al., Charge transmission channel construction between MOF and rGO by means of Co-Mo-S modification, Catal. Sci. Technol., 2017, 7, 4478 – 4488. (IF = 5.774)\r
\r
101. Hao Yang, Zhiliang Jin*, et al., Exploration of Zr-metal organic framework (UiO-66) as highly efficient catalyst for photocatalytic hydrogen production, Nanoscale Res. Lett., 2017, 12, 539: 1-10. (IF = 2.833)\r
\r
102. Kai Fan, Zhiliang Jin*, et al., Construction of CuO-modified zeolitic imidazolate framework-9 (ZIF-9) for photocatalytic hydrogen evolution, Chin. J. Catal., 2017, 38, 2056-2066. (IF = 3.525)\r
\r
\r
2016年 \r
\r
103. Xuqiang Hao, Zhiliang Jin*, et al., Behavior of borate complex anion on the stabilities and the hydrogen evolutions of ZnxCo3-xO4 decorated graphene, Superlattices and Microstructures, 2016, 82, 599 – 611.\r
\r
104. Xuqiang Hao, Zhiliang Jin*, et al., Enhanced surface electron transfer with the aid of methyl viologen on the Co3O4-g-C3N4 photocatalysts, Chem.Lett., 2016,45(2), 116 – 118.\r
\r
105. Xuqiang Hao, Zhiliang Jin*, et al., Modulating photogenerated electron transfer with selectively exposed Co-Mo facet on a novel amorphous g-C3N4/CoxMo1-xS2 photocatalyst, RSC Advances, 2016, 6, 23709 - 23717.\r
\r
106. Xuqiang Hao, Zhiliang Jin*, et al., Functionalization of TiO2 with graphene quantum dots for efficient hydrogen evolution, Superlattices and Microstructures, 2016, 94, 237 – 244.\r
\r
107. Xuqiang Hao, Zhiliang Jin*, et al., Quantum confinement effect of graphene-like C3N4 nanosheets for efficient photocatalytic hydrogen production from water splitting, Acta Phys. – Chim. Sin., 2016,32(10), 2581-2592. ESI 高被引.\r
\r
\r
\r
2、专著\r
\r
★ 《无机晶须》 李武,靳治良,金培鹏等 著,化学工业出版社,北京,2005年6月第 1 版。\r
\r
★ 《化工设计》 刘荣杰 主编,靳治良、李志洲 副主编,中国石化出版社(普通高等教育“十二五”规划教材),北京,2015年7月第 2 版。\r
\r
\r
★ 《干旱环境下古代壁画保护成套技术集成与应用示范研究》 陈港泉 主编,李燕飞、樊再轩、李茸、靳治良、等 著,科学出版社,北京,2019年12月第1版。

相关热点

扫码添加好友