个人简介
工作经历2009.3至今 安徽农业大学 茶树生物学与资源利用国家重点实验室 教授 博导2002.3—2009.2 中国科学技术大学 化学与材料科学学院 副研究员2000.3—2002.2 Institute of Food Research, UK 访问学者1999.8—2000.2 中国科学技术大学 化学与材料科学学院 讲师1988.9—1999.7合肥经济技术学院 测试中心 讲师 学习经历2002.9—2004.7 中国科学院 固体物理研究所 博士1985.9—1988.7 安徽农学院 茶业系 硕士1981.9—1985.7 安徽农学院 茶业系 学士 荣誉全国优秀教师第三届中国优秀青年科技创业奖
研究领域
营养与毒理;茶与健康
近期论文
(43) Dong R, Wang D, Wang X, Zhang K, Chen P, Yang CS, Zhang J# (#, corresponding author) . Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice. Redox Biol. 10:221-232, 2016. (42) Zhang L, Cheng Q, Zhang L, Wang Y, Merrill GF, Ilani T, Fass D, Arnér ES, Zhang J#. Serum thioredoxin reductase is highly increased in mice with hepatocellular carcinoma and its activity is restrained by several mechanisms. Free Radic Biol Med. 99:426-435, 2016. (41) Han M, Zhao G, Wang Y, Wang D, Sun F, Ning J, Wan X#, Zhang J#. Safety and anti-hyperglycemic efficacy of various tea types in mice. Sci Rep. 6:31703, 2016. (40) Wei Y, Chen P, Ling T, Wang Y, Dong R, Zhang C, Zhang L, Han M, Wang D, Wan X, Zhang J#. Certain (-)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG. Food Chem. 204:218-226, 2016. (39) Zhang L, Ning M, Xu Y, Wang C, Zhao G, Cao Q, Zhang J#. Predicting the cytotoxic potency of cigarette smoke by assessing the thioredoxin reductase inhibitory capacity of cigarette smoke extract. Int J Environ Res Public Health. 13:348, 2016. (38) Yang CS, Zhang J, Zhang L, Huang J, Wang Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol Nutr Food Res. 60:160-174, 2016. (37) Wang D, Wei Y, Wang T, Wan X, Yang CS, Reiter RJ, Zhang J#. Melatonin attenuates (-)-epigallocatehin-3-gallate triggered hepatotoxicity without compromising its downregulation of hepatic gluconeogenic and lipogenic genes in mice. J Pineal Res. 59:497-507, 2015. (36) Wang D, Wang Y, Wan X, Yang CS, Zhang J#. Green tea polyphenol (-)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: Responses of major antioxidant enzymes and the Nrf2 rescue pathway. Toxicol Appl Pharmacol. 283:65-74, 2015. (35) Wang Y, Chen P, Zhao G, Sun K, Li D, Wan X, Zhang J#. Inverse relationship between elemental selenium nanoparticle size and inhibition of cancer cell growth in vitro and in vivo. Food Chem Toxicol. 85:71-77, 2015. (34) Wang X, Sun K, Tan Y, Wu S, Zhang J#. Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity. Free Radic Biol Med. 72C:1-10, 2014. (33) Zhang Z, Zhang J#, Xiao J#. Selenoproteins and selenium status in bone physiology and pathology. Biochim Biophys Acta. 1840:3246-3256, 2014. (32) Sun K, Eriksson SE, Tan Y, Zhang L, Arnér ES, Zhang J#. Serum thioredoxin reductase levels increase in response to chemically induced acute liver injury. Biochim Biophys Acta. 1840:2105-2111, 2014. (31) Zhang L, Wei Y, Zhang J#. Novel mechanisms of anticancer activities of green tea component epigallocatechin-3-gallate. Anticancer Agents Med Chem. 14:779-786, 2014. (30) Wu S, Sun K, Wang X, Wang D, Wan X, Zhang J#. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles. J Agric Food Chem. 61:7268-7275. 2013. (29) Sun K, Wu S, Wang Y, Wan X, Thompson HJ, Zhang J#. High-dose sodium selenite toxicity cannot be prevented by the co-administration of pharmacological levels of epigallocatechin-3-gallate which in turn aggravates the toxicity. Food Chem Toxicol. 52:36-41, 2013. (28) Huang J, Zhang Y, Zhou Y, Zhang Z, Xie Z, Zhang J, Wan X. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J Agric Food Chem. 61:8565-8572, 2013. (27) Wang Y, Lu H, Wang D, Li S, Sun K, Wan X, Taylor EW, Zhang J#. Inhibition of glutathione synthesis eliminates the adaptive response of ascitic hepatoma 22 cells to nedaplatin that targets thioredoxin reductase. Toxicol Appl Pharmacol. 265:342-350, 2012. (26) Wang D, Taylor EW, Wang Y, Wan X, Zhang J#. Encapsulated nanoepigallocatechin-3-gallate and elemental selenium nanoparticles as paradigms for nanochemoprevention. Int J Nanomedicine. 7:1711-1721, 2012. (25) Li J, Sun K, Ni L, Wang X, Wang D, Zhang J#. Sodium selenosulfate at an innocuous dose markedly prevents cisplatin-induced gastrointestinal toxicity. Toxicol Appl Pharmacol. 258:376-383, 2012. (24) Zhang J#, Taylor EW, Wan X, Peng D#. Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles. Int J Nanomedicine. 7:815-825, 2012. (23) Lu Y, Zhang J, Wan X, Long M, Li D, Lei P, Zhang Z. Intestinal transport of pure theanine and theanine in green tea extract: Green tea components inhibit theanine absorption and promote theanine excretion. Food Chem. 125:277-280, 2011. (22) Li S, Zhang J#, Li J, Chen D, Matteucci M, Curd J, Duan J. Inhibition of both thioredoxin reductase and glutathione reductase may contribute to the anticancer mechanism of TH-302. Biol Trace Elem Res. 136:294-301, 2010. (21) Wang X, Zhang J#, Xu T. Cyclophosphamide-evoked heart failure involves pronounced co-suppression of cytoplasmic thioredoxin reductase activity and non-protein free thiol level. Eur J Heart Failure. 11:154-162, 2009. (20) Zhang J#, Wang X, Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci. 101:22-31, 2008. (19) Zhang J#, Peng D, Lu H, Liu Q. Attenuating the toxicity of cisplatin by using selenosulfate with reduced risk of selenium toxicity as compared with selenite. Toxicol Appl Pharmacol. 226:251-259, 2008. (18) Zhang J#, Wang X, Lu H. Amifostine increases cure rate of cisplatin on ascites hepatoma 22 via selectively protecting renal thioredoxin reductase. Cancer Lett. 260:127-136, 2008. (17) Wang X, Zhang J#, Xu T. Thioredoxin reductase inactivation as a pivotal mechanism of ifosfamide in cancer therapy. Eur J Pharmacol. 579:66-73, 2008. (16) Zhang J#, Wang H, Peng D, Taylor EW. Further insight into the impact of sodium selenite on selenoenzymes: High-dose selenite enhances hepatic thioredoxin reductase 1 activity as a consequence of liver injury. Toxicol Lett. 176:223-229, 2008. (15) Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G. Elemental selenium particles at nano size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: A comparison with sodium selenite. Aquat Toxicol 89:251-256, 2008. (14) Zhang J#, Lu H, Wang X. Sodium selenosulfate synthesis and demonstration of its in vitro cytotoxic activity against HepG2, Caco2 and three kinds of leukemia cells. Biol Trace Elem Res. 125:13-21, 2008. (13) Wang H, Zhang J#, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 42:1524-1533, 2007. (12) Zhang J#, Lu H. Ifosfamide induces acute renal failure via inhibition of the thioredoxin reductase activity. Free Radic Biol Med. 43:1574-1583, 2007. (11) Wang X, Zhang J#, Xu T. Cyclophosphamide as a potent inhibitor of tumor thioredoxin reductase in vivo. Toxicol Appl Pharmacol. 218:88-95, 2007. (10) Zhang J#, Wang H, Yu H. Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation. Toxicol Appl Pharmacol. 224:81-88, 2007. (9) Peng D, Zhang J#, Liu Q, Taylor EW. Size effect of elemental selenium nanoparticles (Nano-Se) at supranutritional levels on selenium accumulation and glutathione S-transferase activity. J Inorg Biochem. 101:1457-1463, 2007. (8) Peng D, Zhang J#, Liu Q. Effect of sodium selenosulfate on restoring activities of selenium-dependent enzymes and selenium retention compared with sodium selenite in vitro and in vivo. Biol Trace Elem Res. 117:77-88, 2007. (7) Zhang J#, Ma K, Wang H. Cyclophosphamide suppresses thioredoxin reductase in bladder tissue and its adaptive response via inductions of thioredoxin reductase and glutathione peroxidase. Chem Biol Interact. 162:24-30, 2006. (6) Zhang J#, Wang H, Yan X, Zhang L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci. 76:1099-1109, 2005. (5) Zhang J#, Wang H, BaoY, Zhang L. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life Sci. 75:237-244, 2004. (4) Huang B, Zhang Jco-first, Hou J, Chen C. Free radical scavenging efficiency of Nano-Se in vitro. Free Radic. Biol Med. 35:805-813, 2003. (3) Zhang J, Svehlíková V, Bao Y, Howie AF, Beckett GJ, Williamson G. Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis. 24:497-503, 2003. (2) Gao X, Zhang J, Zhang L. Hollow sphere selenium nanoparticles: their in-vitro anti hydroxyl radical effect. Adv Mater. 14:290-293, 2002. (1) Zhang J, Gao X, Zhang L, Bao Y. Biological effects of a nano red elemental selenium. Biofactors. 15:27-38, 2001. 专著章节 (3) Zhang L, Wu S, Wang D, Wan X, Zhang J#. Epigallocatechin-3-gallate (EGCG) in or on nanoparticles: Enhanced stability and bioavailability of EGCG encapsulated in nanoparticles or targeted delivery of gold nanoparticles coated with EGCG. In: Sahu SC, Casciano D (eds) Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology. John Wiley & Sons, pp 131-144, 2014. (2) Zhang J#, Spallholz J. Toxicity of selenium compounds and nano-selenium particles. In: Casciano D, Sahu SC (eds) Handbook of Systems Toxicology. John Wiley & Sons. pp 787-802, 2011. (1) Zhang J#. Biological properties of red elemental selenium at nano size (Nano-Se) in vitro and in vivo. In: Sahu SC, Casciano D (eds) Nanotoxicity: From In Vivo and In Vitro Model to Health Risks. John Wiley & Sons. pp 97-114, 2009. 专利 Zhang J. Use of sodium selenosulfate for supplementing selenium and enhancing the therapeutic efficacy of chemotherapy agents, and a rapid process for preparing sodium selenosulfate. US 8,480,995 B2, 2013.